ترغب بنشر مسار تعليمي؟ اضغط هنا

Fair Marketplace for Secure Outsourced Computations

67   0   0.0 ( 0 )
 نشر من قبل Hung Dang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The cloud computing paradigm offers clients ubiquitous and on demand access to a shared pool of computing resources, enabling the clients to provision scalable services with minimal management effort. Such a pool of resources, however, is typically owned and controlled by a single service provider, making it a single-point-of-failure. This paper presents Kosto - a framework that provisions a fair marketplace for secure outsourced computations, wherein the pool of computing resources aggregates resources offered by a large cohort of independent compute nodes. Kosto protects the confidentiality of clients inputs as well as the integrity of the outsourced computations and their results using trusted hardwares enclave execution, in particular Intel SGX. Furthermore, Kosto warrants fair exchanges between the clients payments for the execution of an outsourced computations and the compute nodes work in servicing the clients requests. Empirical evaluation on the prototype implementation of Kosto shows that performance overhead incurred by enclave execution is as small as 3% for computation-intensive operations, and 1.5x for IO-intensive operations.



قيم البحث

اقرأ أيضاً

Secure multiparty computations enable the distribution of so-called shares of sensitive data to multiple parties such that the multiple parties can effectively process the data while being unable to glean much information about the data (at least not without collusion among all parties to put back together all the shares). Thus, the parties may conspire to send all their processed results to a trusted third party (perhaps the data provider) at the conclusion of the computations, with only the trusted third party being able to view the final results. Secure multiparty computations for privacy-preserving machine-learning turn out to be possible using solely standard floating-point arithmetic, at least with a carefully controlled leakage of information less than the loss of accuracy due to roundoff, all backed by rigorous mathematical proofs of worst-case bounds on information loss and numerical stability in finite-precision arithmetic. Numerical examples illustrate the high performance attained on commodity off-the-shelf hardware for generalized linear models, including ordinary linear least-squares regression, binary and multinomial logistic regression, probit regression, and Poisson regression.
The purpose of Secure Multi-Party Computation is to enable protocol participants to compute a public function of their private inputs while keeping their inputs secret, without resorting to any trusted third party. However, opening the public output of such computations inevitably reveals some information about the private inputs. We propose a measure generalising both Renyi entropy and g-entropy so as to quantify this information leakage. In order to control and restrain such information flows, we introduce the notion of function substitution which replaces the computation of a function that reveals sensitive information with that of an approximate function. We exhibit theoretical bounds for the privacy gains that this approach provides and experimentally show that this enhances the confidentiality of the inputs while controlling the distortion of computed output values. Finally, we investigate the inherent compromise between accuracy of computation and privacy of inputs and we demonstrate how to realise such optimal trade-offs.
Elaborate protocols in Secure Multi-party Computation enable several participants to compute a public function of their own private inputs while ensuring that no undesired information leaks about the private inputs, and without resorting to any trust ed third party. However, the public output of the computation inevitably leaks some information about the private inputs. Recent works have introduced a framework and proposed some techniques for quantifying such information flow. Yet, owing to their complexity, those methods do not scale to practical situations that may involve large input spaces. The main contribution of the work reported here is to formally investigate the information flow captured by the min-entropy in the particular case of secure three-party computations of affine functions in order to make its quantification scalable to realistic scenarios. To this end, we mathematically derive an explicit formula for this entropy under uniform prior beliefs about the inputs. We show that this closed-form expression can be computed in time constant in the inputs sizes and logarithmic in the coefficients of the affine function. Finally, we formulate some theoretical bounds for this privacy leak in the presence of non-uniform prior beliefs.
The growing size of modern datasets necessitates splitting a large scale computation into smaller computations and operate in a distributed manner. Adversaries in a distributed system deliberately send erroneous data in order to affect the computatio n for their benefit. Boolean functions are the key components of many applications, e.g., verification functions in blockchain systems and design of cryptographic algorithms. We consider the problem of computing a Boolean function in a distributed computing system with particular focus on emph{security against Byzantine workers}. Any Boolean function can be modeled as a multivariate polynomial with high degree in general. However, the security threshold (i.e., the maximum number of adversarial workers can be tolerated such that the correct results can be obtained) provided by the recent proposed Lagrange Coded Computing (LCC) can be extremely low if the degree of the polynomial is high. We propose three different schemes called emph{coded Algebraic normal form (ANF)}, emph{coded Disjunctive normal form (DNF)} and emph{coded polynomial threshold function (PTF)}. The key idea of the proposed schemes is to model it as the concatenation of some low-degree polynomials and threshold functions. In terms of the security threshold, we show that the proposed coded ANF and coded DNF are optimal by providing a matching outer bound.
Convolutional neural network is a machine-learning model widely applied in various prediction tasks, such as computer vision and medical image analysis. Their great predictive power requires extensive computation, which encourages model owners to hos t the prediction service in a cloud platform. Recent researches focus on the privacy of the query and results, but they do not provide model privacy against the model-hosting server and may leak partial information about the results. Some of them further require frequent interactions with the querier or heavy computation overheads, which discourages querier from using the prediction service. This paper proposes a new scheme for privacy-preserving neural network prediction in the outsourced setting, i.e., the server cannot learn the query, (intermediate) results, and the model. Similar to SecureML (S&P17), a representative work that provides model privacy, we leverage two non-colluding servers with secret sharing and triplet generation to minimize the usage of heavyweight cryptography. Further, we adopt asynchronous computation to improve the throughput, and design garbled circuits for the non-polynomial activation function to keep the same accuracy as the underlying network (instead of approximating it). Our experiments on MNIST dataset show that our scheme achieves an average of 122x, 14.63x, and 36.69x reduction in latency compared to SecureML, MiniONN (CCS17), and EzPC (EuroS&P19), respectively. For the communication costs, our scheme outperforms SecureML by 1.09x, MiniONN by 36.69x, and EzPC by 31.32x on average. On the CIFAR dataset, our scheme achieves a lower latency by a factor of 7.14x and 3.48x compared to MiniONN and EzPC, respectively. Our scheme also provides 13.88x and 77.46x lower communication costs than MiniONN and EzPC on the CIFAR dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا