ﻻ يوجد ملخص باللغة العربية
Within the framework of non-local time-dependent stellar convection theory, we study in detail the effect of turbulent anisotropy on stellar pulsation stability. The results show that anisotropy has no substantial influence on pulsation stability of g modes and low-order (radial order $n_mathrm{r}<5$) p modes. The effect of turbulent anisotropy increases as the radial order increases. When turbulent anisotropy is neglected, most of high-order ($n_mathrm{r}>5$) p modes of all low-temperature stars become unstable. Fortunately, within a wide range of the anisotropic parameter $c_3$, stellar pulsation stability is not sensitive to the specific value of $c_3$. Therefore it is safe to say that calibration errors of the convective parameter $c_3$ do not cause any uncertainty in the calculation of stellar pulsation stability.
We have computed linear non-adiabatic oscillations of luminous red giants using a non-local and anisotropic time-dependent theory of convection. The results show that low-order radial modes can be self-excited. Their excitation is the result of radia
By using a non-local and time-dependent convection theory, we have calculated radial and low-degree non-radial oscillations for stellar evolutionary models with $M=1.4$--3.0,$mathrm{M}_odot$. The results of our study predict theoretical instability s
Starting from hydrodynamic equations, we have established a set of hydrodynamic equations for average flow and a set of dynamic equations of auto- and cross-correlations of turbulent velocity and temperature fluctuations, following the classic Reynol
Low mass, self-gravitating accretion disks admit quasi-steady,`gravito-turbulent states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales w
We used long-term visual amateur observations of several symbiotic variables for detection of periods that may be caused by pulsation. The examples of multiple periodicities are discussed individually in each case.