ﻻ يوجد ملخص باللغة العربية
Reproducing an all-in-focus image from an image with defocus regions is of practical value in many applications, eg, digital photography, and robotics. Using the output of some existing defocus map estimator, existing approaches first segment a de-focused image into multiple regions blurred by Gaussian kernels with different variance each, and then de-blur each region using the corresponding Gaussian kernel. In this paper, we proposed a blind deconvolution method specifically designed for removing defocus blurring from an image, by providing effective solutions to two critical problems: 1) suppressing the artifacts caused by segmentation error by introducing an additional variable regularized by weighted $ell_0$-norm; and 2) more accurate defocus kernel estimation using non-parametric symmetry and low-rank based constraints on the kernel. The experiments on real datasets showed the advantages of the proposed method over existing ones, thanks to the effective treatments of the two important issues mentioned above during deconvolution.
We present a highly efficient blind restoration method to remove mild blur in natural images. Contrary to the mainstream, we focus on removing slight blur that is often present, damaging image quality and commonly generated by small out-of-focus, len
Multi-focus image fusion (MFIF) has attracted considerable interests due to its numerous applications. While much progress has been made in recent years with efforts on developing various MFIF algorithms, some issues significantly hinder the fair and
Taking an image of an object is at its core a lossy process. The rich information about the three-dimensional structure of the world is flattened to an image plane and decisions such as viewpoint and camera parameters are final and not easily reverti
In this paper, we present a learning-based approach for recovering the 3D geometry of human head from a single portrait image. Our method is learned in an unsupervised manner without any ground-truth 3D data. We represent the head geometry with a p
Intrinsic image decomposition, which is an essential task in computer vision, aims to infer the reflectance and shading of the scene. It is challenging since it needs to separate one image into two components. To tackle this, conventional methods int