ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of jet-clump interaction: a flip of the radio jet head of 3C~84

126   0   0.0 ( 0 )
 نشر من قبل Motoki Kino
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radio jets in active galaxies have been expected to interact with circumnuclear environments in their early phase evolutions. By performing the multi-epoch monitoring observation with the KVN and VERA Array (KaVA) at 43~GHz, we investigate the kinematics of the notable newborn bright component C3 located at the tip of the recurrent jet of 3C~84. During 2015 August-September, we discover the flip of C3 and the amount of the flip is about 0.4~milli-arcsecond in angular scale, which corresponds to 0.14 parsec in physical scale. After the flip of C3, it wobbled at the same location for a few months and then it restarted to propagate towards the southern direction. The flux density of C3 coherently showed the monotonic increase during the observation period. The flip is in good agreement with hydrodynamical simulations of jets in clumpy ambient medium. We estimate the number density of the putative clump based on the momentum balance between the jet thrust and the ram pressure from the clump and it is about $10^{3-5}~{rm cm^{-3}}$. We briefly discuss possible origins of the clump.

قيم البحث

اقرأ أيضاً

Nearby radio galaxies that contain jets are extensively studied with VLBI, addressing jet launching and the physical mechanisms at play around massive black holes. 3C 84 is unique in this regard, because the combination of its proximity and large SMB H mass provides a high spatial resolution to resolve the complex structure at the jet base. For 3C 84 an angular scale of 50 ${mu}$as corresponds to 200 - 250 Schwarzschild radii ($R_s$). Recent RadioAstron VLBI imaging at 22 GHz revealed an east-west elongated feature at the northern end of the VLBI jet, which challenges interpretations. Here we propose instead that the jet apex is not located within the 22 GHz VLBI core region but more upstream of the jet. We base our arguments on a 2D cross-correlation analysis of quasi-simultaneously obtained VLBI images at 15, 43, and 86 GHz, which measures the opacity shift of the VLBI core in 3C 84. With the assumption of the power law index ($k_r$) of the core shift being set to 1, we find the jet apex to be located $83 pm 7$ ${mu}$as north (upstream) of the 86 GHz VLBI core. Depending on the assumptions for $k_r$ and the particle number density power law index n, we find a mixed toroidal/poloidal magnetic field configuration, consistent with a region which is offset from the central engine by about 400-1500 $R_s$. The measured core shift is then used to estimate the magnetic field strength, which amounts to B = 1.80 - 4.0 G near the 86 GHz VLBI core. We discuss some physical implications of these findings.
We present a kinematic study of the subparsec-scale radio jet of the radio galaxy 3C 84/NGC 1275 with the VLBI Exploration of Radio Astrometry (VERA) array at 22 GHz for 80 epochs from 2007 October to 2013 December. The averaged radial velocity of th e bright component C3 with reference to the radio core is found to be $0.27 pm 0.02c$ between 2007 October and 2013 December. This constant velocity of C3 is naturally explained by the advancing motion of the head of the mini-radio lobe. We also find a non-linear component in the motion of C3 with respect to the radio core. We briefly discuss possible origins of this non-linear motion.
We present results of Gemini spectroscopy and Hubble Space Telescope imaging of the 3C~381 radio galaxy. Possible ionising mechanisms for the Extended Emission-Line Region were studied through state-of-the-art diagnostic analysis employing line-ratio s. Photoionisation from the central engine as well as mixed-medium photoionisation models fail in reproducing both the strengths and the behaviour of the highest-excitation lines, such as [NeV]3424, HeII, and [OIII}]5007, which are measured at very large distances from the AGN. Shock-ionisation models provide a better fit to the observation. Expanding shocks with velocities higher than 500 km/s are capable of reaching the observed intensity ratios for lines with different ionisation states and excitation degrees. This model also provide a direct explanation of the mechanical energy input needed to explain the high-velocity line-splitting observed in the velocity field.
Understanding the launching, acceleration, and collimation of jets powered by active galactic nuclei remains an outstanding problem in relativistic astrophysics. This is partly because observational tests of jet formation models suffer from the limit ed angular resolution of ground-based very long baseline interferometry that has thus far been able to probe the transverse jet structure in the acceleration and collimation zone of only two sources. Here we report radio interferometric observations of 3C 84 (NGC 1275), the central galaxy of the Perseus cluster, made with an array including the orbiting radio telescope of the RadioAstron mission. The obtained image transversely resolves the edge-brightened jet in 3C 84 only 30 microarcseconds from the core, which is ten times closer to the central engine than what has been possible in previous ground-based observations, and it allows us to measure the jet collimation profile from ~ 100 to ~10000 gravitational radii from the black hole. The previously found, almost cylindrical jet profile on scales larger than a few thousand r_g is now seen to continue at least down to a few hundred r_g from the black hole and we find a broad jet with a transverse radius larger than about 250 r_g at only 350 r_g from the core. If the bright outer jet layer is launched by the black hole ergosphere, it has to rapidly expand laterally on scales smaller than 100 r_g. If this is not the case, then this jet sheath is likely launched from the accretion disk.
90 - D. C. Homan NRAO 2004
We present multi-frequency, high resolution VLBA circular polarization images of the radio source 3C 84 in the center of NGC 1275. Our images reveal a complex distribution of circular polarization in the inner parsec of the radio jet, with local leve ls exceeding 3% polarization, the highest yet detected with VLBI techniques. The circular polarization changes sign along the jet, making 3C 84 also the first radio jet to show both signs of circular polarization simultaneously. The spectrum and changing sign of the circular polarization indicate that it is unlikely to be purely intrinsic to the emitted synchrotron radiation. The Faraday conversion process makes a significant and perhaps dominant contribution to the circular polarization, and the observed spectrum suggests the conversion process is near saturation. The sign change in the circular polarization along the jet may result from this saturation or may be due to a change in magnetic field order after an apparent bend in the jet. From the small spatial scales probed here, ~ 0.15 pc, and the comparably high levels of circular polarization inferred for the intra-day variable source PKS 1519-273, we suggest a connection between small spatial scales and efficient production of circular polarization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا