ﻻ يوجد ملخص باللغة العربية
The distinguishing number of $G leqslant sym(Omega)$ is the smallest size of a partition of $Omega$ such that only the identity of $G$ fixes all the parts of the partition. Extending earlier results of Cameron, Neumann, Saxl and Seress on the distinguishing number of finite primitive groups, we show that all imprimitive quasiprimitive groups have distinguishing number two, and all non-quasiprimitive semiprimitive groups have distinguishing number two, except for $mathrm{GL}(2, 3)$ acting on the eight non-zero vectors of $mathbb F_2^3$, which has distinguishing number three.
In this paper we study finite semiprimitive permutation groups, that is, groups in which each normal subgroup is transitive or semiregular. We give bounds on the order, base size, minimal degree, fixity, and chief length of an arbitrary finite semipr
Denote by $ u_p(G)$ the number of Sylow $p$-subgroups of $G$. It is not difficult to see that $ u_p(H)leq u_p(G)$ for $Hleq G$, however $ u_p(H)$ does not divide $ u_p(G)$ in general. In this paper we reduce the question whether $ u_p(H)$ divides $ u
Given a finite simplicial graph $Gamma=(V,E)$ with a vertex-labelling $varphi:Vrightarrowleft{text{non-trivial finitely generated groups}right}$, the graph product $G_Gamma$ is the free product of the vertex groups $varphi(v)$ with added relations th
Given a group $G$, we define the power graph $mathcal{P}(G)$ as follows: the vertices are the elements of $G$ and two vertices $x$ and $y$ are joined by an edge if $langle xranglesubseteq langle yrangle$ or $langle yranglesubseteq langle xrangle$. Ob
Let $G_{1}$ and $G_{2}$ be disjoint copies of a graph $G$, and let $g:V(G_{1})rightarrow V(G_{2})$ be a function. A functigraph $F_{G}$ consists of the vertex set $V(G_{1})cup V(G_{2})$ and the edge set $E(G_{1})cup E(G_{2})cup {uv:g(u)=v}$. In this