ترغب بنشر مسار تعليمي؟ اضغط هنا

CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering

81   0   0.0 ( 0 )
 نشر من قبل Zhengqi Li
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Intrinsic image decomposition is a challenging, long-standing computer vision problem for which ground truth data is very difficult to acquire. We explore the use of synthetic data for training CNN-based intrinsic image decomposition models, then applying these learned models to real-world images. To that end, we present ICG, a new, large-scale dataset of physically-based rendered images of scenes with full ground truth decompositions. The rendering process we use is carefully designed to yield high-quality, realistic images, which we find to be crucial for this problem domain. We also propose a new end-to-end training method that learns better decompositions by leveraging ICG, and optionally IIW and SAW, two recent datasets of sparse annotations on real-world images. Surprisingly, we find that a decomposition network trained solely on our synthetic data outperforms the state-of-the-art on both IIW and SAW, and performance improves even further when IIW and SAW data is added during training. Our work demonstrates the suprising effectiveness of carefully-rendered synthetic data for the intrinsic images task.

قيم البحث

اقرأ أيضاً

68 - Yongjie Zhu , Jiajun Tang , Si Li 2021
We propose DeRenderNet, a deep neural network to decompose the albedo and latent lighting, and render shape-(in)dependent shadings, given a single image of an outdoor urban scene, trained in a self-supervised manner. To achieve this goal, we propose to use the albedo maps extracted from scenes in videogames as direct supervision and pre-compute the normal and shadow prior maps based on the depth maps provided as indirect supervision. Compared with state-of-the-art intrinsic image decomposition methods, DeRenderNet produces shadow-free albedo maps with clean details and an accurate prediction of shadows in the shape-independent shading, which is shown to be effective in re-rendering and improving the accuracy of high-level vision tasks for urban scenes.
The ability to edit materials of objects in images is desirable by many content creators. However, this is an extremely challenging task as it requires to disentangle intrinsic physical properties of an image. We propose an end-to-end network archite cture that replicates the forward image formation process to accomplish this task. Specifically, given a single image, the network first predicts intrinsic properties, i.e. shape, illumination, and material, which are then provided to a rendering layer. This layer performs in-network image synthesis, thereby enabling the network to understand the physics behind the image formation process. The proposed rendering layer is fully differentiable, supports both diffuse and specular materials, and thus can be applicable in a variety of problem settings. We demonstrate a rich set of visually plausible material editing examples and provide an extensive comparative study.
Intrinsic image decomposition is the classical task of mapping image to albedo. The WHDR dataset allows methods to be evaluated by comparing predictions to human judgements (lighter, same as, darker). The best modern intrinsic image methods learn a m ap from image to albedo using rendered models and human judgements. This is convenient for practical methods, but cannot explain how a visual agent without geometric, surface and illumination models and a renderer could learn to recover intrinsic images. This paper describes a method that learns intrinsic image decomposition without seeing WHDR annotations, rendered data, or ground truth data. The method relies on paradigms - fake albedos and fake shading fields - together with a novel smoothing procedure that ensures good behavior at short scales on real images. Long scale error is controlled by averaging. Our method achieves WHDR scores competitive with those of strong recent methods allowed to see training WHDR annotations, rendered data, and ground truth data. Because our method is unsupervised, we can compute estimates of the test/train variance of WHDR scores; these are quite large, and it is unsafe to rely small differences in reported WHDR.
With the increasing computational power of todays workstations, real-time physically-based rendering is within reach, rapidly gaining attention across a variety of domains. These have expeditiously applied to medicine, where it is a powerful tool for intuitive 3D data visualization. Embedded devices such as optical see-through head-mounted displays (OST HMDs) have been a trend for medical augmented reality. However, leveraging the obvious benefits of physically-based rendering remains challenging on these devices because of limited computational power, memory usage, and power consumption. We navigate the compromise between device limitations and image quality to achieve reasonable rendering results by introducing a novel light field that can be sampled in real-time on embedded devices. We demonstrate its applications in medicine and discuss limitations of the proposed method. An open-source version of this project is available at https://github.com/lorafib/LumiPath which provides full insight on implementation and exemplary demonstrational material.
285 - Yunfei Liu , Yu Li , Shaodi You 2019
Intrinsic image decomposition, which is an essential task in computer vision, aims to infer the reflectance and shading of the scene. It is challenging since it needs to separate one image into two components. To tackle this, conventional methods int roduce various priors to constrain the solution, yet with limited performance. Meanwhile, the problem is typically solved by supervised learning methods, which is actually not an ideal solution since obtaining ground truth reflectance and shading for massive general natural scenes is challenging and even impossible. In this paper, we propose a novel unsupervised intrinsic image decomposition framework, which relies on neither labeled training data nor hand-crafted priors. Instead, it directly learns the latent feature of reflectance and shading from unsupervised and uncorrelated data. To enable this, we explore the independence between reflectance and shading, the domain invariant content constraint and the physical constraint. Extensive experiments on both synthetic and real image datasets demonstrate consistently superior performance of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا