ترغب بنشر مسار تعليمي؟ اضغط هنا

Core-Halo Collective Instabilities

300   0   0.0 ( 0 )
 نشر من قبل Alexey Burov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Alexey Burov




اسأل ChatGPT حول البحث

At strong space charge, transverse modes of the bunch core may effectively couple with those of the halo, leading to instabilities well below the core-only transverse mode-coupling threshold.



قيم البحث

اقرأ أيضاً

59 - Alexey Burov 2021
Coulomb fields of charged particle beams in circular machines determine, together with wake fields, modes of the collective beam oscillations, both for transverse and longitudinal degrees of freedom. Recent progress in these two areas of beam dynamics is discussed.
181 - Alexey Burov 2020
A brief historical review is presented of progressing understanding of transverse coherent instabilities of charged particles beams in circular machines when both Coulomb and wake fields are important. The paper relates to a talk given at ICFA Worksh op on Mitigation of Coherent Beam Instabilities in Particle Accelerators, 23-27 September 2019 in Zermatt, Switzerland.
When a charged particle travels across the vacuum chamber of an accelerator, it induces electromagnetic fields, which are left mainly behind the generating particle. These electromagnetic fields act back on the beam and influence its motion. Such an interaction of the beam with its surro undings results in beam energy losses, alters the shape of the bunches, and shifts the betatron and synchrotron frequencies. At high beam current the fields can even lead to instabilities, thus limiting the performance of the accelerator in terms of beam quality and current intensity. We discuss in this lecture the general features of the electromagnetic fields, introducing the concepts of wakefields and giving a few simple examples in cylindrical geometry. We then show the effect of the wakefields on the dynamics of a beam in a linac, dealing in particular with the beam breakup instability and how to cure it.
Transverse beam stability is strongly affected by the beam space charge. Usually it is analyzed with the rigid-beam model. However this model is only valid when a bare (not affected by the space charge) tune spread is small compared to the space char ge tune shift. This condition specifies a relatively small area of parameters which, however, is the most interesting for practical applications. The Landau damping rate and the beam Schottky spectra are computed assuming that validity condition is satisfied. The results are applied to a round Gaussian beam. The stability thresholds are described by simple fits for the cases of chromatic and octupole tune spreads.
192 - Alexey Burov 2018
For a single hadron bunch in a circular accelerator at zero chromaticity, without multi-turn wakes and without electron clouds and other beams, only one transverse collective instability is possible, the mode-coupling instability, or TMCI. For suffic iently strong space charge (SC), the instability threshold of the wake-driven coherent tune shift normally increases linearly with the SC tune shift, as independently concluded by several authors using different methods. This stability condition has, however, a very strange feature: at strong SC, it is totally insensitive to the number of particles. Thus, were it correct, such a beam with sufficiently strong SC, being stable at some intensity, would remain stable at higher intensity, regardless of how much higher! This paper suggests a resolution of this conundrum: while SC suppresses TMCI, it introduces head-to-tail convective amplifications, which could make the beam even less stable than without SC, even if all the coherent tunes are real, i.e. all the modes are stable in the conventional {it absolute} meaning of the word. This is done using an effective new method of analysis of the beams transverse spectrum for arbitrary space charge and wake fields. Two new types of beam instabilities are introduced: the {it saturating convective instability}, SCI, and the {it absolute-convective instability}, ACI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا