ﻻ يوجد ملخص باللغة العربية
We find the leading-order effect of gravitational back-reaction on cosmic strings for points near kinks and cusps. Near a kink, the effect diverges as the inverse cube root of the distance to the kink, and acts in a direction transverse to the worldsheet. Over time the kink is rounded off, but only regions fairly close to the kink are significantly affected. Near cusps, the effect diverges inverse linearly with the distance to the cusp, and acts against the direction of the cusp motion. This results in a fractional loss of string energy that diverges logarithmically with the distance of closest approach to the cusp.
The nonlinear memory effect is a fascinating prediction of general relativity (GR), in which oscillatory gravitational-wave (GW) signals are generically accompanied by a monotonically-increasing strain which persists in the detector long after the si
After discussing the various issues regarding and requirements on pure quantum gravitational observables in homogeneous-isotropic conditions, we construct a composite operator observable satisfying most of them. We also expand it to first order in th
Cosmic strings are potential gravitational wave (GW) sources that can be probed by pulsar timing arrays (PTAs). In this work we develop a detection algorithm for a GW burst from a cusp on a cosmic string, and apply it to Parkes PTA data. We find four
We study the relative contribution of cusps and pseudocusps, on cosmic (super)strings, to the emitted bursts of gravitational waves. The gravitational wave emission in the vicinity of highly relativistic points on the string follows, for a high enoug
We construct, for the first time, the time-domain gravitational wave strain waveform from the collapse of a strongly gravitating Abelian Higgs cosmic string loop in full general relativity. We show that the strain exhibits a large memory effect durin