ﻻ يوجد ملخص باللغة العربية
The Schrodinger-Poisson-Newton equations for crystals with a cubic lattice and one ion per cell are considered. The ion charge density is assumed i) to satisfy the Wiener and Jellium conditions introduced in our previous paper [28], and ii) to be exponentially decaying at infinity. The corresponding examples are given. We study the linearized dynamics at the ground state. The dispersion relations are introduced via spectral resolution for the non-selfadjoint Hamilton generator using the positivity of the energy established in [28]. Our main result is the dispersion decay in the weighted Sobolev norms for solutions with initial states from the space of continuous spectrum of the Hamilton generator. We also prove the absence of singular spectrum and limiting absorption principle. The multiplicity of every eigenvalue is shown to be infinite. The proofs rely on novel exact bounds and compactness for the inversion of the Bloch generators and on uniform asymptotics for the dispersion relations. We derive the bounds by the energy positivity from [28]. We also use the theory of analytic sets.
We consider the Schrodinger--Poisson--Newton equations for finite crystals under periodic boundary conditions with one ion per cell of a lattice. The electron field is described by the $N$-particle Schrodinger equation with antisymmetric wave functio
We consider the Schrodinger-Poisson-Newton equations for finite crystals under periodic boundary conditions with one ion per cell of a lattice. The electrons are described by one-particle Schrodinger equation. Our main results are i) the global dynam
We prove a nonlinear Poisson type formula for the Schrodinger group. Such a formula had been derived in a previous paper by the authors, as a consequence of the study of the asymptotic behavior of nonlinear wave operators for small data. In this note
This paper is devoted to study the existence and multiplicity solutions for the nonlinear Schrodinger-Poisson systems involving fractional Laplacian operator: begin{equation}label{eq*} left{ aligned &(-Delta)^{s} u+V(x)u+ phi u=f(x,u), quad &te
We prove sharp $L^infty$ decay and modified scattering for a one-dimensional dispersion-managed cubic nonlinear Schrodinger equation with small initial data chosen from a weighted Sobolev space. Specifically, we work with an averaged version of the d