ﻻ يوجد ملخص باللغة العربية
The Einstein-Yang-Mills equations are the source of many interesting solutions within general relativity, including families of particle-like and black hole solutions, and critical phenomena of more than one type. These solutions, discovered in the last thirty years, all assume a restricted form for the Yang-Mills gauge potential known as the magnetic ansatz. In this thesis we relax that assumption and investigate the most general solutions of the Einstein-Yang-Mills system assuming spherically symmetry, a Yang-Mills gauge group of SU(2), and zero cosmological constant. We proceed primarily by numerically integrating the equations and find new static solutions, for both regular and black hole boundary conditions, which are not asymptotically flat, and attempt to classify the possible static behaviours. We develop a code to solve the dynamic equations that uses a novel adaptive mesh refinement algorithm making full use of double-null coordinates. We find that the type II critical behaviour in the general case exhibits non-universal critical solutions, in contrast to the magnetic case and to all previously observed type II critical behaviour.
By using of the Euler-Lagrange equations, we find a static spherically symmetric solution in the Einstein-aether theory with the coupling constants restricted. The solution is similar to the Reissner-Nordstrom solution in that it has an inner Cauchy
We show that the spherically symmetric Einstein-scalar-field equations for wave-like decaying initial data at null infinity have unique global solutions in (0, infty) and unique generalized solutions on [0, infty) in the sense of Christodoulou. We emphasize that this decaying condition is sharp.
We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a wel
We obtain the static spherically symmetric solutions of a class of gravitational models whose additions to the General Relativity (GR) action forbid Ricci-flat, in particular, Schwarzschild geometries. These theories are selected to maintain the (fir
Inspired in the Standard Model of Elementary Particles, the Einstein Yang-Mills Higgs action with the Higgs field in the SU(2) representation was proposed in Class. Quantum Grav. 32 (2015) 045002 as the element responsible for the dark energy phenome