ترغب بنشر مسار تعليمي؟ اضغط هنا

Review-Driven Multi-Label Music Style Classification by Exploiting Style Correlations

60   0   0.0 ( 0 )
 نشر من قبل Guangxiang Zhao
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper explores a new natural language processing task, review-driven multi-label music style classification. This task requires the system to identify multiple styles of music based on its reviews on websites. The biggest challenge lies in the complicated relations of music styles. It has brought failure to many multi-label classification methods. To tackle this problem, we propose a novel deep learning approach to automatically learn and exploit style correlations. The proposed method consists of two parts: a label-graph based neural network, and a soft training mechanism with correlation-based continuous label representation. Experimental results show that our approach achieves large improvements over the baselines on the proposed dataset. Especially, the micro F1 is improved from 53.9 to 64.5, and the one-error is reduced from 30.5 to 22.6. Furthermore, the visualized analysis shows that our approach performs well in capturing style correlations.

قيم البحث

اقرأ أيضاً

Automatically labeling multiple styles for every song is a comprehensive application in all kinds of music websites. Recently, some researches explore review-driven multi-label music style classification and exploit style correlations for this task. However, their methods focus on mining the statistical relations between different music styles and only consider shallow style relations. Moreover, these statistical relations suffer from the underfitting problem because some music styles have little training data. To tackle these problems, we propose a novel knowledge relations integrated framework (KRF) to capture the complete style correlations, which jointly exploits the inherent relations between music styles according to external knowledge and their statistical relations. Based on the two types of relations, we use a graph convolutional network to learn the deep correlations between styles automatically. Experimental results show that our framework significantly outperforms state-of-the-art methods. Further studies demonstrate that our framework can effectively alleviate the underfitting problem and learn meaningful style correlations. The source code can be available at https://github.com/Makwen1995/MusicGenre.
This study tackles generative reading comprehension (RC), which consists of answering questions based on textual evidence and natural language generation (NLG). We propose a multi-style abstractive summarization model for question answering, called M asque. The proposed model has two key characteristics. First, unlike most studies on RC that have focused on extracting an answer span from the provided passages, our model instead focuses on generating a summary from the question and multiple passages. This serves to cover various answer styles required for real-world applications. Second, whereas previous studies built a specific model for each answer style because of the difficulty of acquiring one general model, our approach learns multi-style answers within a model to improve the NLG capability for all styles involved. This also enables our model to give an answer in the target style. Experiments show that our model achieves state-of-the-art performance on the Q&A task and the Q&A + NLG task of MS MARCO 2.1 and the summary task of NarrativeQA. We observe that the transfer of the style-independent NLG capability to the target style is the key to its success.
The stylistic properties of text have intrigued computational linguistics researchers in recent years. Specifically, researchers have investigated the Text Style Transfer (TST) task, which aims to change the stylistic properties of the text while ret aining its style independent content. Over the last few years, many novel TST algorithms have been developed, while the industry has leveraged these algorithms to enable exciting TST applications. The field of TST research has burgeoned because of this symbiosis. This article aims to provide a comprehensive review of recent research efforts on text style transfer. More concretely, we create a taxonomy to organize the TST models and provide a comprehensive summary of the state of the art. We review the existing evaluation methodologies for TST tasks and conduct a large-scale reproducibility study where we experimentally benchmark 19 state-of-the-art TST algorithms on two publicly available datasets. Finally, we expand on current trends and provide new perspectives on the new and exciting developments in the TST field.
Led by the success of neural style transfer on visual arts, there has been a rising trend very recently in the effort of music style transfer. However, music style is not yet a well-defined concept from a scientific point of view. The difficulty lies in the intrinsic multi-level and multi-modal character of music representation (which is very different from image representation). As a result, depending on their interpretation of music style, current studies under the category of music style transfer, are actually solving completely different problems that belong to a variety of sub-fields of Computer Music. Also, a vanilla end-to-end approach, which aims at dealing with all levels of music representation at once by directly adopting the method of image style transfer, leads to poor results. Thus, we vitally propose a more scientifically-viable definition of music style transfer by breaking it down into precise concepts of timbre style transfer, performance style transfer and composition style transfer, as well as to connect different aspects of music style transfer with existing well-established sub-fields of computer music studies. In addition, we discuss the current limitations of music style modeling and its future directions by drawing spirit from some deep generative models, especially the ones using unsupervised learning and disentanglement techniques.
This article contributes to the search for a notion of postural style, focusing on the issue of classifying subjects in terms of how they maintain posture. Longer term, the hope is to make it possible to determine on a case by case basis which sensor ial information is prevalent in postural control, and to improve/adapt protocols for functional rehabilitation among those who show deficits in maintaining posture, typically seniors. Here, we specifically tackle the statistical problem of classifying subjects sampled from a two-class population. Each subject (enrolled in a cohort of 54 participants) undergoes four experimental protocols which are designed to evaluate potential deficits in maintaining posture. These protocols result in four complex trajectories, from which we can extract four small-dimensional summary measures. Because undergoing several protocols can be unpleasant, and sometimes painful, we try to limit the number of protocols needed for the classification. Therefore, we first rank the protocols by decreasing order of relevance, then we derive four plug-in classifiers which involve the best (i.e., more informative), the two best, the three best and all four protocols. This two-step procedure relies on the cutting-edge methodologies of targeted maximum likelihood learning (a methodology for robust and efficient inference) and super-learning (a machine learning procedure for aggregating various estimation procedures into a single better estimation procedure). A simulation study is carried out. The performances of the procedure applied to the real data set (and evaluated by the leave-one-out rule) go as high as an 87% rate of correct classification (47 out of 54 subjects correctly classified), using only the best protocol.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا