ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Impact of Helium Content on the RR Lyrae Distance Scale

67   0   0.0 ( 0 )
 نشر من قبل Marcella Marconi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We constructed new sets of He-enhanced (Y = 0.30, Y = 0.40) nonlinear, time-dependent convective hydrodynamical models of RR Lyrae (RRL) stars covering a broad range in metal abundances (Z from 0.0001 to 0.02). The increase in He content from the canonical value (Y = 0.245) to Y = 0.30 and 0.40 causes a simultaneous increase in stellar luminosity and in pulsation period. To investigate the dependence of the RRL distance scale on the He abundance, we computed new optical (RI) and near-infrared (JHK ) period luminosity metallicity helium relations. Interestingly enough, the increase in He content causes a minimal change in the coefficients of both period and metallicity terms, since canonical and He-enhanced models obey similar PLZ relations. On the contrary, the classical B and V band mean magnitude metallicity relations and the R band PLZ relation display a significant dependence on the He content. The He enhanced models are, at fixed metal content, 0.2 to 0.5 mag brighter than canonical ones. This variation is only marginally affected by evolutionary effects. The quoted distance diagnostics once calibrated with trigonometric parallaxes (Gaia) will provide the opportunity to estimate the He content of field and cluster RRLs. Moreover, the use of either spectroscopic or photometric metal abundances will pave the way to new empirical constraints on the universality of the helium to metal enrichment ratio in old stellar tracers.



قيم البحث

اقرأ أيضاً

We report the first estimate of the He abundance of the population of RR Lyrae stars in the Galactic bulge. This is done by comparing the recent observational data with the latest models. We use the large samples of ab type RR Lyrae stars found by OG LE IV in the inner bulge and by the VVV survey in the outer bulge. We present the result from the new models computed by Marconi et al. (2017), showing that the minimum Period for fundamental RR Lyrae pulsators depends on the He content. By comparing these models with the observations in a Period versus effective temperature plane, we find that the bulk of the bulge ab type RR Lyrae are consistent with primordial He abundance Y=0.245, ruling out a significant He-enriched population. This work demonstrates that the He content of the bulge RR Lyrae is different from that of the bulk of the bulge population as traced by the red clump giants, that appear to be significantly more He-rich.
We present new sets of nonlinear, time-dependent convective hydrodynamical models of RR Lyrae stars assuming two metal (Z=0.0005, Z=0.001) and three helium abundances (Y=0.24, 0.30, 0.38). For each chemical composition we constructed a grid of fundam ental (FU) and first overtone (FO) models covering a broad range of stellar masses and luminosities. To constrain the impact of the helium content on RR Lyrae properties, we adopted two observables --period distribution, luminosity amplitudes-- that are independent of distance and reddening. The current predictions confirm that the helium content has a marginal effect on the pulsation properties. The key parameter causing the difference between canonical and He-enhanced observables is the luminosity. We compared current predictions with the sample of 189 RR Lyrae stars in omega Cen and we found that the period range of He-enhanced models is systematically longer than observed. These findings apply to metal-poor and metal-intermediate He-enhanced models. To further constrain the impact of He-enhanced structures on the period distribution we also computed a series of synthetic HB models and we found that the predicted period distribution, based on a Gaussian sampling in mass, agrees quite well with observations. This applies not only to the minimum fundamentalized period of RR Lyrae stars (0.39 vs 0.34 day), but also to the fraction of Type II Cepheids (2% vs 3%). We also computed a series of synthetic HB models assuming a mixed HB population in which the 80% is made of canonical HB structures, while the 20% is made of He-enhanced (Y=0.30) HB structures. We found that the fraction of Type II Cepheids predicted by these models is almost a factor of two larger than observed (5% vs 3%). This indicates that the fraction of He-enhanced structures in omega Cen cannot be larger than 20%.
We collected over 6000 high-resolution spectra of four dozen field RR Lyrae (RRL) variables pulsating either in the fundamental (39 RRab) or in the first overtone (9 RRc) mode. We measured radial velocities (RVs) of four strong metallic and four Balm er lines along the entire pulsational cycle and derived RV amplitudes with accuracies better than 1$-$2~kmsec. The new amplitudes were combined with literature data for 23~RRab and 3~RRc stars (total sample 74 RRLs) which allowed us to investigate the variation of the Bailey diagram (photometric amplitude versus period) when moving from optical to mid-infrared bands and to re-cast the Bailey diagram in terms of RV amplitudes. We found that RV amplitudes for RRab are minimally affected by nonlinear phenomena (shocks) and multi-periodicity (Blazhko effect). The RV slope ($log P$--A(V$_r$)) when compared with the visual slope ($log P$--A($V$)) is shallower and the dispersion, at fixed period, decreases by a factor of two. We constructed homogeneous sets of Horizontal Branch evolutionary models and nonlinear, convective pulsation models of RRLs to constrain the impact of evolutionary effects on their pulsation properties. Evolution causes, on the Bailey diagram based on RV amplitudes, a modest variation in pulsation period and a large dispersion in amplitude. The broad dispersion in period of the Bailey diagram is mainly caused by variation in RRL intrinsic parameters (stellar mass, chemical composition). Empirical evidence indicates that RV amplitudes are an optimal diagnostic for tracing the mean effective temperature across the RRab instability strip.
100 - V. F. Braga (1 , 2 , 3 2018
We present a new complete Near-Infrared (NIR, $JHK_s$) census of RR Lyrae stars (RRLs) in the globular $omega$ Cen (NGC 5139). We collected 15,472 $JHK_s$ images with 4-8m class telescopes over 15 years (2000-2015) covering a sky area around the clus ter center of 60x34 arcmin$^2$. These images provided calibrated photometry for 182 out of the 198 cluster RRL candidates with ten to sixty measurements per band. We also provide new homogeneous estimates of the photometric amplitude for 180 ($J$), 176 ($H$) and 174 ($K_s$) RRLs. These data were supplemented with single-epoch $JK_s$ magnitudes from VHS and with single-epoch $H$ magnitudes from 2MASS. Using proprietary optical and NIR data together with new optical light curves (ASAS-SN) we also updated pulsation periods for 59 candidate RRLs. As a whole, we provide $JHK_s$ magnitudes for 90 RRab (fundamentals), 103 RRc (first overtones) and one RRd (mixed--mode pulsator). We found that NIR/optical photometric amplitude ratios increase when moving from first overtone to fundamental and to long-period (P>0.7 days) fundamental RRLs. Using predicted Period-Luminosity-Metallicity relations, we derive a true distance modulus of 13.674$pm$0.008$pm$0.038 mag (statistical error and standard deviation of the median)---based on spectroscopic iron abundances---and of 13.698$pm$0.004$pm$0.048 mag---based on photometric iron abundances. We also found evidence of possible systematics at the 5-10% level in the zero-point of the PLs based on the five calibrating RRLs whose parallaxes had been determined with HST
We present new absolute trigonometric parallaxes and proper motions for seven Pop II variable stars: five RR Lyr variables; RZ Cep, XZ Cyg, SU Dra, RR Lyr, UV Oct; and two type 2 Cepheids; VY Pyx and {kappa} Pav. We obtained these results with astrom etric data from Fine Guidance Sensors, white-light interfer- ometers on Hubble Space Telescope. We find absolute parallaxes in milliseconds of arc: RZ Cep, 2.12pm0.16 mas; XZ Cyg, 1.67pm0.17 mas; SU Dra, 1.42pm0.16 mas; RR Lyr, 3.77pm0.13 mas; UV Oct, 1.71pm0.10 mas; VY Pyx, 6.44pm0.23 mas; and {kappa} Pav, 5.57pm0.28 mas; an average {sigma}{pi}/{pi} = 5.4%. With these parallaxes we compute absolute magnitudes in V and K bandpasses corrected for interstellar extinction and Lutz-Kelker-Hanson bias. Using these RRL absolute magnitudes, we then derive zero-points for MV -[Fe/H] and MK -[Fe/H]-Log P relations. The technique of reduced parallaxes corroborates these results. We employ our new results to determine distances and ages of several Galactic globular clusters and the dis- tance of the LMC. The latter is close to that previously derived from Classical Cepheids uncorrected for any metallicity effect, indicating that any such effect is small. We also discuss the somewhat puzzling results obtained for our two type 2 Cepheids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا