ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling of X-ray spectral properties of a black hole in the Seyfert 1 galaxy NGC~7469

185   0   0.0 ( 0 )
 نشر من قبل Titarchuk Lev
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present our analysis of X-ray spectral properties observed from the Seyfrert 1 galactic nucleus NGC~7469 using the RXTE and ASCA observations. We demonstrate strong observational evidence that NGC~7469 undergoes spectral transitions from the low hard state (LHS) to the intermediate state (IS) during these observations. The RXTE observations (1996--2009) show that the source was in the IS ~ 75 % of the time only, ~ 25 % of the time in the LHS. The spectra of NGC~7469 are well fitted by the so-called bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index saturation level, Gamma_{sat}+2.1+/-0.1, in the Gamma versus mass accretion rate, Mdot correlation. This Gamma- Mdot correlation allows us to estimate the black hole (BH) mass in NGC~7469 to be M__BH> 3 x 10^6 solar masses assuming the distance to NGC~7469 of 70 Mpc. For this BH mass estimate, we use the scaling method taking Galactic BHs, GRO~J1655--40, Cyg~ X--1 and an extragalactic BH source, NGC~4051 as reference sources. The Gamma versus Mdot correlation revealed in NGC~7469 is similar to those in a number of Galactic and extragalactic BHs and it clearly shows the correlation along with the strong Gamma saturation at ~2.1. This is robust observational evidence for the presence of a BH in NGC~7469. We also find that the seed photon temperatures are quite low, of the order of 140-200 eV, which are consistent with a high BH mass in NGC~7469 that is more than 3x10^6 solar masses.


قيم البحث

اقرأ أيضاً

A large reverberation mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hbeta 4861 and He II 4686 and a central black hole mass measurement of about 10 million solar masses, consistent with previous measurements. A ver y low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hbeta measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hbeta-emitting broad-line region and the AGN luminosity. It was necessary to detrend the continuum and Hbeta and He II 4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.
We report on daily monitoring of the Seyfert galaxy NGC 7469, around 95 GHz and 143 GHz, with the IRAM 30 m radio telescope, and with the Swift X-Ray and UV/Optical telescopes, over an overlapping period of 45 days. The source was observed on 36 days with IRAM, and the flux density in both mm bands was on average $sim 10$ mJy, but varied by $pm50%$, and by up to a factor of 2 between days. The present IRAM variability parameters are consistent with earlier CARMA monitoring, which had only 18 data points. The X-ray light curve of NGC 7469 over the same period spans a factor of 5 in flux with small uncertainties. Similar variability in the mm-band and in the X-rays lends support to the notion of both sources originating in the same physical component of the AGN, likely the accretion disk corona. Simultaneous monitoring in eight UV/optical bands shows much less variability than the mm and X-rays, implying this light originates from a different AGN component, likely the accretion disk itself. We use a tentative 14 day lag of the X-ray light curve with respect to the 95 GHz light curve to speculate on coronal implications. More precise mm-band measurements of a sample of X-ray-variable AGN are needed, preferably also on time scales of less than a day where X-rays vary dramatically, in order to properly test the physical connection between the two bands.
131 - Alex Markowitz 2010
We present the broadband X-ray power spectral density function (PSD) of the X-ray-luminous Seyfert 1.2 NGC 7469, measured from Rossi X-ray Timing Explorer monitoring data and two XMM-Newton observations. We find significant evidence for a turnover in the 2-10 keV PSD at a temporal frequency of 2.0(+3.0,-0.8)e-6 Hz or 1.0(+3.0,-0.6)e-6 Hz, depending on the exact form of the break (sharply-broken or slowly-bending power-law, respectively). The ``surrogate Monte Carlo method of Press et al. (1992) was used to map out the probability distributions of PSD model parameters and obtain reliable uncertainties (68 per cent confidence limits quoted here). The corresponding break time scale of 5.8 (+/- 3.5) days or 11.6(+17.5,-8.7) days, respectively, is consistent with the empirical relation between PSD break time scale, black hole mass and bolometric luminosity of McHardy et al. Compared to the 2-10 keV PSD, the 10-20 keV PSD has a much flatter shape at high temporal frequencies, and no PSD break is significantly detected, suggesting an energy-dependent evolution not unlike that exhibited by several Galactic black hole systems.
Using a month-long X-ray lightcurve from ${it RXTE}$/PCA and 1.5 month long UV continuum lightcurves from ${it IUE}$ spectra in 1220$-$1970 $r{A}$, we performed a detailed time-lag study of the Seyfert 1 galaxy NGC 7469. Our cross-correlation analysi s confirms previous results showing that the X-rays are delayed relative to the UV continuum at 1315 $r{A}$ by 3.49 $pm$ 0.22 days which is possibly caused by either propagating fluctuation or variable comptonisation. However, if variations slower than 5 days are removed from the X-ray lightcurve, the UV variations then lag behind the X-rays variations by 0.37$pm$0.14 day, consistent with reprocessing of the X-rays by a surrounding accretion disc. A very similar reverberation delay is observed between ${it Swift}$/XRT X-ray and ${it Swift}$/UVOT UVW2, U lightcurves. Continuum lightcurves extracted from the ${it Swift}$/GRISM spectra show delays with respect to X-rays consistent with reverberation. Separating the UV continuum variations faster and slower than 5 days, the slow variations at 1825 $r{A}$ lag those at 1315 $r{A}$ by $0.29pm0.06$ day, while the fast variations are coincident ($0.04pm0.12$ day). The UV/optical continuum reverberation lag from ${it IUE}$, ${it Swift}$ and other optical telescopes at different wavelengths are consistent with the relationship: $tau propto lambda^{4/3}$, predicted for the standard accretion disc theory while the best-fit X-ray delay from ${it RXTE}$ and ${it Swift}$/XRT shows a negative X-ray offset of $sim$0.38 days from the standard disc delay prediction.
We analyze the X-ray, optical, and mid-infrared data of a changing-look Seyfert galaxy sdssj15 at $zsimeq0.086$. Over a period of one decade (2009 - 2018), its broad H$alpha$ line intensity increased by a factor of $sim$4. Meanwhile, the X-ray emissi on in 2014 as observed by chandra was about five times brighter than that in 2010 by {it Suzaku}, and the corresponding emissions in V-band, mid-infrared W1 band brighten by $sim$ 0.18, 0.32 mag, respectively. Moreover, the absorption in X-rays is moderate and stable, i.e. ${rm N_{H}}sim 10^{21} {rm cm^{-2}}$, but the X-ray spectrum becomes harder in the 2014 chandra bright state (i.e. photon index $Gamma = 1.52^{+0.06}_{-0.06}$) than that of the 2010 suzaku low state ($Gamma=2.03^{+0.22}_{-0.21}$). With an Eddington ratio being lower than a few percent, the inner region of the accretion disk in sdssj15 is likely a hot accretion flow. We then compile from literature the X-ray data of changing-look AGNs, and find that they generally follow the well-established V-shaped correlation in AGNs, that is, above a critical turn-over luminosity the X-ray spectra soften with the increasing luminosity, and below that luminosity the trend is reversed in a way of harder when brighter. This presents a direct evidence that CL-AGNs have distinctive changes in not only the optical spectral type, but also the X-ray spectral shape. The similarity in the X-ray spectral evolution between CL-AGNs and black hole X-ray binaries indicates that the observed CL-AGNs phenomena may relate to the state transition in accretion physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا