ترغب بنشر مسار تعليمي؟ اضغط هنا

Protected 0-pi states in SIsFS junctions for Josephson memory and logic

117   0   0.0 ( 0 )
 نشر من قبل Alexander Golubov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the peculiarities in current-phase relations (CPR) of the SIsFS junction in the region of $0$ to $pi $ transition. These CPR consist of two independent branches corresponding to $0-$ and $pi-$ states of the contact. We have found that depending on the transparency of the SIs tunnel barrier the decrease of the s-layer thickness leads to transformation of the CPR shape going in the two possible ways: either one of the branches exists only in discrete intervals of the phase difference $varphi$ or both branches are sinusoidal but differ in the magnitude of their critical currents. We demonstrate that the difference can be as large as $10%$ under maintaining superconductivity in the s layer. An applicability of these phenomena for memory and logic application is discussed.


قيم البحث

اقرأ أيضاً

We present a study on low-$T_c$ superconductor-insulator-ferromagnet-superconductor (SIFS) Josephson junctions. SIFS junctions have gained considerable interest in recent years because they show a number of interesting properties for future classical and quantum computing devices. We optimized the fabrication process of these junctions to achieve a homogeneous current transport, ending up with high-quality samples. Depending on the thickness of the ferromagnetic layer and on temperature, the SIFS junctions are in the ground state with a phase drop either 0 or $pi$. By using a ferromagnetic layer with variable step-like thickness along the junction, we obtained a so-called 0-$pi$ Josephson junction, in which 0 and $pi$ ground states compete with each other. At a certain temperature the 0 and $pi$ parts of the junction are perfectly symmetric, i.e. the absolute critical current densities are equal. In this case the degenerate ground state corresponds to a vortex of supercurrent circulating clock- or counterclockwise and creating a magnetic flux which carries a fraction of the magnetic flux quantum $Phi_0$.
We present the results of theoretical study of Current-Phase Relations (CPR) in Josephson junctions of SIsFS type, where S is a bulk superconductor and IsF is a complex weak link consisting of a superconducting film s, a metallic ferromagnet F and an insulating barrier I. We calculate the relationship between Josephson current and phase difference. At temperatures close to critical, calculations are performed analytically in the frame of the Ginsburg-Landau equations. At low temperatures numerical method is developed to solve selfconsistently the Usadel equations in the structure. We demonstrate that SIsFS junctions have several distinct regimes of supercurrent transport and we examine spatial distributions of the pair potential across the structure in different regimes. We study the crossover between these regimes which is caused by shifting the location of a weak link from the tunnel barrier I to the F-layer. We show that strong deviations of the CPR from sinusoidal shape occur even in a vicinity of Tc, and these deviations are strongest in the crossover regime. We demonstrate the existence of temperature-induced crossover between 0 and pi states in the contact and show that smoothness of this transition strongly depends on the CPR shape.
We present experimental studies of static and dynamic properties of 0, pi and 0-pi superconductor-insulator-ferromagnet-superconductor (SIFS) Josephson junctions of small and intermediate length. In the underdamped limit these junctions exhibit a ric h dynamical behavior such as resonant steps on the current-voltage characteristics. Varying the experimental conditions, zero field steps, Fiske steps and Shapiro steps are observed with a high resolution. A strong signature of the 0-pi Josephson junction is demonstrated by measuring the critical current as a function of two components (B_x, B_y) of an in-plane magnetic field. The experimental observation of a half-integer zero field step in 0-pi SIFS junctions is presented.
We fabricated high quality Nb/Al_2O_3/Ni_{0.6}Cu_{0.4}/Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Using a ferromagnetic layer with a step-like thickness, we obtain a 0-pi junction, with equal lengths and critic al currents of 0 and pi parts. The ground state of our 330 microns (1.3 lambda_J) long junction corresponds to a spontaneous vortex of supercurrent pinned at the 0-pi step and carrying ~6.7% of the magnetic flux quantum Phi_0. The dependence of the critical current on the applied magnetic field shows a clear minimum in the vicinity of zero field.
We theoretically study the Josephson current in Ising superconductor-half-metal-Ising superconductor junctions. By solving the Bogoliubov-de Gennes equations, the Josephson currents contributed by the discrete Andreev levels and the continuous spectr um are obtained. For very short junctions, because the direct tunneling of the Cooper pair dominates the Josephson current, the current-phase difference relation is independent of the magnetization direction, which is the same as the conventional superconductor-ferromagnet-superconductor junctions. On the other hand, when the length of the half-metal is similar to or greater than the superconducting coherence length, the spin-triplet Josephson effect occurs and dominates the Josephson current. In this case, the current-phase difference relations show the strong magnetoanisotropic behaviors with the period pi. When the magnetization direction points to the $pm$ z directions, the current is zero regardless of the phase difference. However, the current has a large value when the magnetization direction is parallel to the junction plane, which leads to a perfect switch effect of the Josephson current. Furthermore, we find that the long junctions can host both the 0 state and pi state, and the $0$-$pi$ transitions can be achieved with the change of the magnetization direction. The physical origins of the switch effect and $0$-$pi$ transitions are interpreted from the perspectives of the spin-triplet Andreev reflection, the Ising pairing order parameter and the Ginzburg-Landau type of free energy. In addition, the influences of the chemical potential, the magnetization magnitude, and the strength of the Ising spin-orbit coupling on the switch effect and $0$-$pi$ transitions are also investigated. Furthermore, the two-dimensional Josephson junctions are also investigated and we show that the spin-triplet Josephson effect can exist always.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا