ترغب بنشر مسار تعليمي؟ اضغط هنا

A sub-functor for Ext and Cohen-Macaulay associated graded modules with bounded multiplicity

145   0   0.0 ( 0 )
 نشر من قبل Tony Puthenpurakal
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $(A,mathfrak{m})$ be a Henselian Cohen-Macaulay local ring and let CM(A) be the category of maximal Cohen-Macaulay $A$-modules. We construct $T colon CM(A)times CM(A) rightarrow mod(A)$, a subfunctor of $Ext^1_A(-, -)$ and use it to study properties of associated graded modules over $G(A) = bigoplus_{ngeq 0} mathfrak{m}^n/mathfrak{m}^{n+1}$, the associated graded ring of $A$. As an application we give several examples of complete Cohen-Macaulay local rings $A$ with $G(A)$ Cohen-Macaulay and having distinct indecomposable maximal Cohen-Macaulay modules $M_n$ with $G(M_n)$ Cohen-Macaulay and the set ${e(M_n)}$ bounded (here $e(M)$ denotes multiplicity of $M$).



قيم البحث

اقرأ أيضاً

Let $(A,mathfrak{m})$ be a hypersurface ring with dimension $d$, and $M$ a MCM $A-$module with reduction no.2 and $mu(M)=2$ or $3$ then we have proved that depth$G(M)geq d-mu(M)+1$. If $e(A)=3$ and $mu(M)=4$ then in this case we have proved that dept h$G(M)geq d-3$. When $A = Q/(f)$ where $Q = k[[X_1,cdots, X_{d+1}]]$ then we give estimates for depth $G(M)$ in terms of minimal presentation of $M$. Our paper is the first systematic study of depth of associated graded modules of MCM modules over hypersurface rings.
186 - Yuji Yoshino 2010
As a stable analogue of degenerations, we introduce the notion of stable degenerations for Cohen-Macaulay modules over a Gorenstein local algebra. We shall give several necessary and/or sufficient conditions for the stable degeneration. These conditi ons will be helpful to see when a Cohen-Macaulay module degenerates to another.
Let P be a lattice polytope with $h^*$-vector $(1, h^*_1, h^*_2)$. In this note we show that if $h_2^* leq h_1^*$, then $P$ is IDP. More generally, we show the corresponding statements for semi-standard graded Cohen-Macaulay domains over algebraically closed fields.
For a wide class of Cohen--Macaulay modules over the local ring of the plane curve singularity of type $T_{36}$ we describe explicitly the corresponding matrix factorizations. The calculations are based on the technique of matrix problems, in particular, representations of bunches of chains.
For a wide class of Cohen--Macaulay modules over the local ring of the plane curve singularity of type T_44 we explicitly describe the corresponding matrix factorizations. The calculations are based on the technique of matrix problems, in particular, representations of bunches of chains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا