ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Ray Muon Radiography Applications in Safeguards and Arms Control

107   0   0.0 ( 0 )
 نشر من قبل J. Matthew Durham
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Matthew Durham




اسأل ChatGPT حول البحث

Muons are the most penetrating radiographic probe that exists today. These elementary particles possess a unique combination of physical properties that allows them to pass through dense, heavily shielded objects that are opaque to typical photon/neutron probes, and emerge with useful radiographic information on the objectsinternal substructure. Interactions of cosmic rays in the Earths upper atmosphere provide a constant, natural source of muons that can be used for passive interrogation, eliminating the need for artificial sources of radiation. These proceedings discuss specific applications of muon radiography in nuclear safeguards and arms control treaty verification.



قيم البحث

اقرأ أيضاً

In this report, we assess muon multiple scattering tomography as a non-destructive inspection technique in several typical areas of interest to the nuclear power industry, including monitoring concrete degradation, gate valve conditions, and pipe wal l thickness. This work is motivated by the need for radiographic methods that do not require the licensing, training, and safety controls of x-rays, and by the need to be able to penetrate considerable overburden to examine internal details of components that are otherwise inaccessible, with minimum impact on industrial operations. In some scenarios, we find that muon tomography may be an attractive alternative to more typical measurements.
113 - Hiroshi Nakashima 2012
Experimental studies of shielding and radiation effects at Fermi National Accelerator Laboratory (FNAL) have been carried out under collaboration between FNAL and Japan, aiming at benchmarking of simulation codes and study of irradiation effects for upgrade and design of new high-energy accelerator facilities. The purposes of this collaboration are (1) acquisition of shielding data in a proton beam energy domain above 100 GeV; (2) further evaluation of predictive accuracy of the PHITS and MARS codes; (3) modification of physics models and data in these codes if needed; (4) establishment of irradiation field for radiation effect tests; and (5) development of a code module for improved description of radiation effects. A series of experiments has been performed at the Pbar target station and NuMI facility, using irradiation of targets with 120 GeV protons for antiproton and neutrino production, as well as the M-test beam line (M-test) for measuring nuclear data and detector responses. Various nuclear and shielding data have been measured by activation methods with chemical separation techniques as well as by other detectors such as a Bonner ball counter. Analyses with the experimental data are in progress for benchmarking the PHITS and MARS15 codes. In this presentation recent activities and results are reviewed.
The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating pro cesses. Measurements of the muons anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio $mu_mu / mu_p$, lepton mass ratio $m_{mu} / m_e$, and proton charge radius $r_p$. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.
We studied the inner structure of the nuclear reactor of the Japan Atomic Power Company (JAPC) at Tokai, Japan, by the muon radiography. In this study, muon detectors were placed outside of the reactor building. By detecting cosmic muons penetrating through the wall of the reactor building, we could successfully identify the objects such as the containment vessel, pressure vessel, and other structures of the reactor. We also observed a concentration of heavy material which can be attributed to the nuclear fuel assemblies stored in the nuclear fuel storage pool.
57 - R. S. Henderson 2004
To measure the muon decay parameters with high accuracy, we require an array of precision drift detector layers whose relative position is known with very high accuracy. This article describes the design, construction and performance of these detecto rs in the TWIST (TRIUMF Weak Interaction Symmetry Test) spectrometer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا