ترغب بنشر مسار تعليمي؟ اضغط هنا

Microscopic phase diagram of LaFeAsO single crystals under pressure

405   0   0.0 ( 0 )
 نشر من قبل Philipp Materne
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated LaFeAsO single crystals by means of synchrotron Mossbauer spectroscopy under pressures up to 7.5 GPa and down to 13 K and provide a microscopic phase diagram. We found a continuous suppression of the magnetic hyperfine field with increasing pressure and it completely vanishes at $sim$ 7.5 GPa which is in contrast to the behavior in polycrystalline samples where the magnetic order vanishes at $sim$ 20 GPa. The different behavior of the polycrystalline samples might be due to As-vacancies. Our results are in qualitative agreement with density functional theory calculations where a reduction of the magnetic moment with increasing pressure was found. We found that among different samples at ambient pressure the magnetic phase transition temperature as well as the low-temperature magnetic hyperfine field decrease with increasing unit cell volume.



قيم البحث

اقرأ أيضاً

121 - H. Okada , K. Igawa , H. Takahashi 2008
Electrical resistivity measurements under high pressures up to 29 GPa were performed for oxypnictide compound LaFeAsO. We found a pressure-induced superconductivity in LaFeAsO. The maximum value of Tc is 21 K at ~12 GPa. The pressure dependence of th e Tc is similar to those of LaFeAsO1-xFx series reported previously.
142 - V. A. Sidorov , Xin Lu , T. Park 2013
We report the temperature-pressure (T-P) phase diagram of CePt2In7 single crystals, especially the pressure evolution of the antiferromagnetic order and the emergence of superconductivity, which have been studied by electrical resistivity and ac calo rimetry under nearly hydrostatic environments. Compared with its polycrystalline counterpart, bulk superconductivity coexists with antiferromagnetism in a much narrower pressure region. The possible existence of textured superconductivity and local quantum criticality also are observed in CePt2In7, exhibiting a remarkable similarity with CeRhIn5.
Millimeter-sized single crystals of LaFeAsO, LaFeAsO1-xFx, and LaFe1-xCoxAsO were grown in NaAs flux at ambient pressure. The detailed growth procedure and crystal characterizations are reported. The as-grown crystals have typical dimensions of 3 * 4 * 0.05-0.3 mm3 with the crystallographic c-axis perpendicular to the plane of the plate-like single crystals. Some crystals manifest linear dimensions as large as 4-5 mm. X-ray and neutron single crystal scattering confirmed that LaFeAsO crystals exhibit a structural phase transition at Ts ~ 154 K and a magnetic phase transition at TSDW ~ 140 K. The transition temperatures agree with those determined by anisotropic magnetization, in-plane electrical resistivity and specific heat measurements and are consistent with previous reports on polycrystalline samples. Co and F were successfully introduced into the lattice leading to superconducting LaFe1-xCoxAsO and LaFeAsO1-xFx single crystals, respectively. This growth protocol has been successfully employed to grow single crystals of NdFeAsO. Thus it is expected to be broadly applicable to grow other RMAsO (R = rare earth, M = transition metal) compounds. These large crystals will facilitate the efforts of unraveling the underlying physics of iron pniticide superconductors.
We have investigated the magnetization properties and flux dynamics of superconducting Cu$_x$TiSe$_2$ single crystals within wide range of copper concentrations. We find that the superconducting anisotropy is low and independent on copper concentrati on ($gammasim1.7$), except in the case of strongly underdoped samples ($xleq0.06$) that show a gradual increase in anisotropy to $gammasim1.9$. The vortex phase diagram in this material is characterized by broad region of vortex liquid phase that is unusual for such low-$T_c$ superconductor with low anisotropy. Below the irreversibility line the vortex solid state supports relatively low critical current densities as compared to the depairing current limit ($J_c/J_0sim10^{-7}$). All this points out that local fluctuations in copper concentration have little effect on bulk pinning properties in this system.
264 - A. F. Wang , J. J. Lin , P. Cheng 2013
A series of high quality NaFe$_{1-x}$Cu$_x$As single crystals has been grown by a self-flux technique, which were systematically characterized via structural, transport, thermodynamic, and high pressure measurements. Both the structural and magnetic transitions are suppressed by Cu doping, and bulk superconductivity is induced by Cu doping. Superconducting transition temperature ($T_c$) is initially enhanced from 9.6 to 11.5 K by Cu doping, and then suppressed with further doping. A phase diagram similar to NaFe$_{1-x}$Co$_x$As is obtained except that insulating instead of metallic behavior is observed in extremely overdoped samples. $T_c$s of underdoped, optimally doped, and overdoped samples are all notably enhanced by applying pressure. Although a universal maximum transition temperature ($T_c^{max}$) of about 31 K under external pressure is observed in underdoped and optimally doped NaFe$_{1-x}$Co$_x$As, $T_c^{max}$ of NaFe$_{1-x}$Cu$_x$As is monotonously suppressed by Cu doping, suggesting that impurity potential of Cu is stronger than Co in NaFeAs. The comparison between Cu and Co doping effect in NaFeAs indicates that Cu serves as an effective electron dopant with strong impurity potential, but part of the doped electrons are localized and do not fill the energy bands as predicted by the rigid-band model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا