ترغب بنشر مسار تعليمي؟ اضغط هنا

Narrow-line photoassociation spectroscopy and mass-scaling of bosonic strontium

110   0   0.0 ( 0 )
 نشر من قبل Benjamin Reschovsky
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using new experimental measurements of photoassociation resonances near the $^1mathrm{S}_0 rightarrow phantom{ }^3mathrm{P}_1$ intercombination transition in $^{84}$Sr and $^{86}$Sr, we present an updated study into the mass-scaling behavior of bosonic strontium dimers. A previous mass-scaling model [Borkowski et al., Phys. Rev. A 90, 032713 (2014)] was able to incorporate a large number of photoassociation resonances for $^{88}$Sr, but at the time only a handful of resonances close to the dissociation limit were known for $^{84}$Sr and $^{86}$Sr. In this work, we perform a more thorough measurement of $^{84}$Sr and $^{86}$Sr bound states, identifying multiple new resonances at deeper binding energies out to $E/h=-5$ GHz. We also identify several previously measured resonances that cannot be experimentally reproduced and provide alternative binding energies instead. With this improved spectrum, we develop a mass-scaled model that reproduces the observed binding energies of $^{86}$Sr and $^{88}$Sr to within 1 MHz. In order to accurately reproduce the deeper bound states, our model includes a second $1_u$ channel and more faithfully reproduces the depth of the potential. As determined by the previous mass-scaling study, $^{84}$Sr $0_u^+$ levels are strongly perturbed by the avoided crossing between the $^1mathrm{S}_0 + phantom{ }^3mathrm{P}_1$ $0_u^+$ $(^3Pi_u)$ and $^1mathrm{S}_0 + phantom{ }^1mathrm{D}_2$ $0_u^+$ $(^1Sigma_u^+)$ potential curves and therefore are not included in this mass-scaled model, but are accurately reproduced using an isotope-specific model with slightly different quantum defect parameters. In addition, the optical lengths of the $^{84}$Sr $0_u^+, u=-2$ to $ u=-5$ states are measured and compared to numerical estimates to characterize their use as optical Feshbach resonances.



قيم البحث

اقرأ أيضاً

We present a spectroscopy scheme for the 7-kHz-wide 689-nm intercombination line of strontium. We rely on shelving detection, where electrons are first excited to a metastable state by the spectroscopy laser before their state is probed using the bro ad transition at 461 nm. As in the similar setting of calcium beam clocks, this enhances dramatically the signal strength as compared to direct saturated fluorescence or absorption spectroscopy of the narrow line. We implement shelving spectroscopy both in directed atomic beams and hot vapor cells with isotropic atomic velocities. We measure a fractional frequency instability $sim 2 times 10^{-12}$ at 1 s limited by technical noise - about one order of magnitude above shot noise limitations for our experimental parameters. Our work illustrates the robustness and flexibility of a scheme that can be very easily implemented in the reference cells or ovens of most existing strontium experiments, and may find applications for low-complexity clocks.
We present spectroscopic measurements of seven vibrational levels $v=29-35$ of the $A(1^1Sigma_u^+)$ excited state of Li$_2$ molecules by the photoassociation of a degenerate Fermi gas of $^6$Li atoms. The absolute uncertainty of our measurements is $pm 0.00002$ cm$^{-1}$ ($pm 600$ kHz) and we use these new data to further refine an analytic potential for this state. This work provides high accuracy photo-association resonance locations essential for the eventual high resolution mapping of the $X(1^1Sigma_g^+)$ state enabling further improvements to the s-wave scattering length determination of Li and enabling the eventual creation of ultra-cold ground state $^6$Li$_2$ molecules.
We present experimental observations of seven vibrational levels $v=20-26$ of the $1^{3}Sigma_{g}^{+}$ excited state of Li$_2$ molecules by the photoassociation (PA) of a degenerate Fermi gas of $^6$Li atoms. For each vibrational level, we resolve th e rotational structure using a Feshbach resonance to enhance the PA rates from p-wave collisions. We also, for the first time, determine the spin-spin and spin-rotation interaction constants for this state. The absolute uncertainty of our measurements is $pm 0.00002$ cm$^{-1}$ ($pm 600$ kHz). We use these new data to further refine an analytic potential for this state.
We perform photoassociation spectroscopy in an ultracold $^{23}$Na-$^6$Li mixture to study the $c^3Sigma^+$ excited triplet molecular potential. We observe 50 vibrational states and their substructure to an accuracy of 20 MHz, and provide line streng th data from photoassociation loss measurements. An analysis of the vibrational line positions using near-dissociation expansions and a full potential fit is presented. This is the first observation of the $c^3Sigma^+$ potential, as well as photoassociation in the NaLi system.
We demonstrate a set of tools for microscopic control of neutral strontium atoms. We report single-atom loading into an array of sub-wavelength scale optical tweezers, light-shift free control of a narrow-linewidth optical transition, three-dimension al ground-state cooling, and high-fidelity nondestructive imaging of single atoms on sub-wavelength spatial scales. Extending the microscopic control currently achievable in single-valence-electron atoms to species with more complex internal structure, like strontium, unlocks a wealth of opportunities in quantum information science, including tweezer-based metrology, new quantum computing architectures, and new paths to low-entropy many-body physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا