ترغب بنشر مسار تعليمي؟ اضغط هنا

Almost pure $J_{mathrm{eff}} = 1/2$ Mott state of In$_2$Ir$_2$O$_7$ in the limit of reduced inter-site hopping

106   0   0.0 ( 0 )
 نشر من قبل Aleksandra Krajewska
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The pyrochlore iridate In$_2$Ir$_2$O$_7$ is a strong $J_{mathrm{eff}} = 1/2$ Mott insulator with frustrated magnetism. Despite the large trigonal crystal field, a small admixture of $J_{mathrm{eff}} = 3/2$ component in the $J_{mathrm{eff}} = 1/2$ bands and a small splitting of $J_{mathrm{eff}} = 3/2$ bands are observed as compared with other pyrochlore iridates A$_2$Ir$_2$O$_7$ (A: trivalent cation). We argue that the reduced inter-site hopping between the $J_{mathrm{eff}} = 1/2$ and the $J_{mathrm{eff}} = 3/2$ manifold plays a predominant role in the distinct behavior of In$_2$Ir$_2$O$_7$ compared with other A$_2$Ir$_2$O$_7$. The effect of the intersite hopping should not be dismissed in the local physics of spin-orbital-entangled $J_{mathrm{eff}} = 1/2$ Mott insulators.



قيم البحث

اقرأ أيضاً

Transition metal oxides exhibit various competing phases and exotic phenomena depending on how their reaction to the rich degeneracy of the $d$-orbital. Large spin-orbit coupling (SOC) reduces this degeneracy in a unique way by providing a spin-orbit al-entangled ground state for 4$d$ and 5$d$ transition metal compounds. In particular, the spin-orbital-entangled Kramers doublet, known as the $J_{mathbf{eff}}$=1/2 pseudospin, appears in layered iridates and $alpha$-RuCl$_3$, manifesting a relativistic Mott insulating phase. Such entanglement, however, seems barely attainable in 3$d$ transition metal oxides, where the SOC is small and the orbital angular momentum is easily quenched. From experimental and theoretical evidence, here we report on the CuAl$_2$O$_4$ spinel as the first example of a $J_{mathbf{eff}}$=1/2 Mott insulator in 3$d$ transition metal compounds. Based on the experimental study, including synthesis of the cubic CuAl$_2$O$_4$ single crystal, density functional theory and dynamical mean field theory calculations reveal that the $J_{mathbf{eff}}$=1/2 state survives the competition with an orbital-momentum-quenched $S$=1/2 state. The electron-addition spectra probing unoccupied states are well described by the $j_{mathbf{eff}}$=1/2 hole state, whereas electron-removal spectra have a rich multiplet structure. The fully relativistic entity found in CuAl$_2$O$_4$ provides new insight into the untapped regime where the spin-orbital-entangled Kramers pair coexists with strong electron correlation.
X-ray magnetic critical scattering measurements and specific heat measurements were performed on the perovskite iridate Sr$_3$Ir$_2$O$_7$. We find that the magnetic interactions close to the N{e}el temperature $T_N$ = 283.4(2) K are three-dimensional . This contrasts with previous studies which suggest two-dimensional behaviour like Sr$_2$IrO$_4$. Violation of the Harris criterion ($d u>2$) means that weak disorder becomes relevant. This leads a rounding of the antiferromagnetic phase transition at $T_N$, and modifies the critical exponents relative to the clean system. Specifically, we determine that the critical behaviour of Sr$_3$Ir$_2$O$_7$ is representative of the diluted 3D Ising universality class.
We report a combined experimental and theoretical x-ray magnetic circular dichroism (XMCD) spectroscopy study at the Ir-$L_{2,3}$ edges on the Ir$^{5+}$ ions of the layered hybrid solid state oxide Sr$_2$Co$_{0.5}$Ir$_{0.5}$O$_4$ with the K$_2$NiF$_4 $ structure. From theoretical simulation of the experimental Ir-$L_{2,3}$ XMCD spectrum, we found a deviation from a pure $J_{eff}=0$ ground state with an anisotropic orbital-to-spin moment ratio ($L_x/2S_x$ = 0.43 and $L_z/2S_z$ = 0.78). This deviation is mainly due to multiplet interactions being not small compared to the cubic crystal field and due to the presence of a large tetragonal crystal field associated with the crystal structure. Nevertheless, our calculations show that the energy gap between the singlet ground state and the triplet excited state is still large and that the magnetic properties of the Ir$^{5+}$ ions can be well described in terms of singlet Van Vleck paramagnetism.
A recent inelastic neutron scattering experiment on $mathrm{Yb}_2 mathrm{Ti}_2 mathrm{O}_7$ uncovers an unusual scattering continuum in the spin excitation spectrum despite the splayed ferromagnetic order in the ground state. While there exist well d efined spin wave excitations at high magnetic fields, the one magnon modes and the two magnon continuum start to strongly overlap upon decreasing the field, and eventually they become the scattering continuum at zero field. Motivated by these observations, we investigate the possible emergence of a magnetically ordered ground state with fractionalized excitations in the spin model with the exchange parameters determined from two previous experiments. Using the fermionic parton mean field theory, we show that the magnetically ordered state with fractionalized excitations can arise as a stable mean field ground state in the presence of sufficiently strong quantum fluctuations. The spin excitation spectrum in such a ground state is computed and shown to have the scattering continuum. Upon increasing the magnetic field, the fractionalized magnetically ordered state is suppressed, and is eventually replaced by the conventional magnetically ordered phase at high fields, which is consistent with the experimental data. We discuss further implications of these results to the experiments and possible improvements on the theoretical analysis.
Polycrystalline samples of NaYbO$_2$ are investigated by bulk magnetization and specific-heat measurements, as well as by nuclear magnetic resonance (NMR) and electron spin resonance (ESR) as local probes. No signatures of long-range magnetic order a re found down to 0.3~K, evidencing a highly frustrated spin-liquid-like ground state in zero field. Above 2,T, signatures of magnetic order are observed in thermodynamic measurements, suggesting the possibility of a field-induced quantum phase transition. The $^{23}$Na NMR relaxation rates reveal the absence of magnetic order and persistent fluctuations down to 0.3~K at very low fields and confirm the bulk magnetic order above 2~T. The $H$-$T$ phase diagram is obtained and discussed along with the existing theoretical concepts for layered spin-$frac{1}{2}$ triangular-lattice antiferromagnets
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا