ﻻ يوجد ملخص باللغة العربية
We introduce and explore a one-dimensional hybrid quantum circuit model consisting of both unitary gates and projective measurements. While the unitary gates are drawn from a random distribution and act uniformly in the circuit, the measurements are made at random positions and times throughout the system. By varying the measurement rate we can tune between the volume law entangled phase for the random unitary circuit model (no measurements) and a quantum Zeno phase where strong measurements suppress the entanglement growth to saturate in an area-law. Extensive numerical simulations of the quantum trajectories of the many-particle wavefunctions (exploiting Clifford circuitry to access systems up to 512 qubits) provide evidence for a stable weak measurement phase that exhibits volume-law entanglement entropy, with a coefficient decreasing with increasing measurement rate. We also present evidence for a novel continuous quantum dynamical phase transition between the weak measurement phase and the quantum Zeno phase, driven by a competition between the entangling tendencies of unitary evolution and the disentangling tendencies of projective measurements. Detailed steady-state and dynamic critical properties of this novel quantum entanglement transition are accessed.
The resilience of quantum entanglement to a classicality-inducing environment is tied to fundamental aspects of quantum many-body systems. The dynamics of entanglement has recently been studied in the context of measurement-induced entanglement trans
Entanglement is usually quantified by von Neumann entropy, but its properties are much more complex than what can be expressed with a single number. We show that the three distinct dynamical phases known as thermalization, Anderson localization, and
Phase transitions are driven by collective fluctuations of a systems constituents that emerge at a critical point. This mechanism has been extensively explored for classical and quantum systems in equilibrium, whose critical behavior is described by
Quantum emulators, owing to their large degree of tunability and control, allow the observation of fine aspects of closed quantum many-body systems, as either the regime where thermalization takes place or when it is halted by the presence of disorde
We investigate the occurrence of the phenomenon of many-body localization (MBL) on a D-Wave 2000Q programmable quantum annealer. We study a spin-1/2 transverse-field Ising model defined on a Chimera connectivity graph, with random exchange interactio