ﻻ يوجد ملخص باللغة العربية
A circumbinary disc around a pair of merging stellar-mass black holes may be shocked and heated during the recoil of the merged hole, causing a near-simultaneous electromagnetic counterpart to the gravitational wave event. The shocks occur around the recoil radius, where the disc orbital velocity is equal to the recoil velocity. The amount of mass present near this radius at the time of the merger is critical in determining how much radiation is released. We explore the evolution of a circumbinary disc in two limits. First, we consider an accretion disc that feels no torque from the binary. The disc does not survive until the merger unless there is a dead zone, a region of low turbulence. Even with the dead zone, the surface density in this case may be small. Second, we consider a disc that feels a strong binary torque that prevents accretion on to the binary. In this case there is significantly more mass in regions of interest at the time of the merger. A dead zone in this disc increases the mass close to the recoil radius. For typical binary-disc parameters we expect accretion to be significantly slowed by the resonant torque from the binary, and for a dead zone to be present. We conclude that provided significant mass orbits the binary after the formation of the black hole binary and that the radiation produced in recoil shocks can escape the flow efficiently, there is likely to be an observable electromagnetic signal from black hole binary mergers.
The LIGO and Virgo detectors have recently directly observed gravitational waves from several mergers of pairs of stellar-mass black holes, as well as from one merging pair of neutron stars. These observations raise the hope that compact object merge
The merger rate of stellar-mass black hole binaries (sBHBs) inferred by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) suggests the need for an efficient source of sBHB formation. Active galactic nucleus (AGN) disks are a pro
Ultra-luminous X-ray sources (ULXs) have been puzzling us with a debate whether they consist of an intermediate mass black hole or super-Eddington accretion by a stellar mass black hole. Here we suggest that in the presence of large scale strong magn
The masses, rates, and spins of merging stellar-mass binary black holes (BBHs) detected by aLIGO and Virgo provide challenges to traditional BBH formation and merger scenarios. An active galactic nucleus (AGN) disk provides a promising additional mer
If a black hole has a low spin value, it must double its mass to reach a high spin parameter. Although this is easily accomplished through mergers or accretion in the case of supermassive black holes in galactic centers, it is impossible for stellar-