ترغب بنشر مسار تعليمي؟ اضغط هنا

Unitary-projective entanglement dynamics

136   0   0.0 ( 0 )
 نشر من قبل Michael Pretko
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Starting from a state of low quantum entanglement, local unitary time evolution increases the entanglement of a quantum many-body system. In contrast, local projective measurements disentangle degrees of freedom and decrease entanglement. We study the interplay of these competing tendencies by considering time evolution combining both unitary and projective dynamics. We begin by constructing a toy model of Bell pair dynamics which demonstrates that measurements can keep a system in a state of low (i.e. area law) entanglement, in contrast with the volume law entanglement produced by generic pure unitary time evolution. While the simplest Bell pair model has area law entanglement for any measurement rate, as seen in certain non-interacting systems, we show that more generic models of entanglement can feature an area-to-volume law transition at a critical value of the measurement rate, in agreement with recent numerical investigations. As a concrete example of these ideas, we analytically investigate Clifford evolution in qubit systems which can exhibit an entanglement transition. We are able to identify stabilizer size distributions characterizing the area law, volume law and critical fixed points. We also discuss Floquet random circuits, where the answers depend on the order of limits - one order of limits yields area law entanglement for any non-zero measurement rate, whereas a different order of limits allows for an area law - volume law transition. Finally, we provide a rigorous argument that a system subjected to projective measurements can only exhibit a volume law entanglement entropy if it also features a subleading correction term, which provides a universal signature of projective dynamics in the high-entanglement phase. Note: The results presented here supersede those of all previou



قيم البحث

اقرأ أيضاً

Models for non-unitary quantum dynamics, such as quantum circuits that include projective measurements, have been shown to exhibit rich quantum critical behavior. There are many complementary perspectives on this behavior. For example, there is a kno wn correspondence between d-dimensional local non-unitary quantum circuits and tensor networks on a D=(d+1)-dimensional lattice. Here, we show that in the case of systems of non-interacting fermions, there is furthermore a full correspondence between non-unitary circuits in d spatial dimensions and unitary non-interacting fermion problems with static Hermitian Hamiltonians in D=(d+1) spatial dimensions. This provides a powerful new perspective for understanding entanglement phases and critical behavior exhibited by non-interacting circuits. Classifying the symmetries of the corresponding non-interacting Hamiltonian, we show that a large class of random circuits, including the most generic circuits with randomness in space and time, are in correspondence with Hamiltonians with static spatial disorder in the ten Altland-Zirnbauer symmetry classes. We find the criticality that is known to occur in all of these classes to be the origin of the critical entanglement properties of the corresponding random non-unitary circuit. To exemplify this, we numerically study the quantum states at the boundary of Haar-random Gaussian fermionic tensor networks of dimension D=2 and D=3. We show that the most general such tensor network ensemble corresponds to a unitary problem of non-interacting fermions with static disorder in Altland-Zirnbauer symmetry class DIII, which for both D=2 and D=3 is known to exhibit a stable critical metallic phase. Tensor networks and corresponding random non-unitary circuits in the other nine Altland-Zirnbauer symmetry classes can be obtained from the DIII case by implementing Clifford algebra extensions for classifying spaces.
Random measurements have been shown to induce a phase transition in an extended quantum system evolving under chaotic unitary dynamics, when the strength of measurements exceeds a threshold value. Below this threshold, a steady state with a sub-therm al volume law entanglement emerges, which is resistant to the disentangling action of measurements, suggesting a connection to quantum error-correcting codes. Here we quantify these notions by identifying a universal, subleading logarithmic contribution to the volume law entanglement entropy: $S^{(2)}(A)=kappa L_A+frac{3}{2}log L_A$ which bounds the mutual information between a qudit inside region $A$ and the rest of the system. Specifically, we find the power law decay of the mutual information $I({x}:bar{A})propto x^{-3/2}$ with distance $x$ from the regions boundary, which implies that measuring a qudit deep inside $A$ will have negligible effect on the entanglement of $A$. We obtain these results by mapping the entanglement dynamics to the imaginary time evolution of an Ising model, to which we can apply field-theoretic and matrix-product-state techniques. Finally, exploiting the error-correction viewpoint, we assume that the volume-law state is an encoding of a Page state in a quantum error-correcting code to obtain a bound on the critical measurement strength $p_{c}$ as a function of the qudit dimension $d$: $p_{c}log[(d^{2}-1)({p_{c}^{-1}-1})]le log[(1-p_{c})d]$. The bound is saturated at $p_c(drightarrowinfty)=1/2$ and provides a reasonable estimate for the qubit transition: $p_c(d=2) le 0.1893$.
We propose entanglement negativity as a fine-grained probe of measurement-induced criticality. We motivate this proposal in stabilizer states, where for two disjoint subregions, comparing their mutual negativity and their mutual information leads to a precise distinction between bipartite and multipartite entanglement. In a measurement-only stabilizer circuit that maps exactly to two-dimensional critical percolation, we show that the mutual information and the mutual negativity are governed by boundary conformal fields of different scaling dimensions at long distances. We then consider a class of hybrid circuit models obtained by perturbing the measurement-only circuit with unitary gates of progressive levels of complexity. While other critical exponents vary appreciably for different choices of unitary gate ensembles at their respective critical points, the mutual negativity has scaling dimension 3 across remarkably many of the hybrid circuits, which is notably different from that in percolation. We contrast our results with limiting cases where a geometrical minimal-cut picture is available.
We show that weak measurements can induce a quantum phase transition of interacting many-body systems from an ergodic thermal phase with a large entropy to a nonergodic localized phase with a small entropy, but only if the measurement strength exceed s a critical value. We demonstrate this effect for a one-dimensional quantum circuit evolving under random unitary transformations and generic positive operator-valued measurements of variable strength. As opposed to projective measurements describing a restricted class of open systems, the measuring device is modeled as a continuous Gaussian probe, capturing a large class of environments. By employing data collapse and studying the enhanced fluctuations at the transition, we obtain a consistent phase boundary in the space of the measurement strength and the measurement probability, clearly demonstrating a critical value of the measurement strength below which the system is always ergodic, irrespective of the measurement probability. These findings provide guidance for quantum engineering of many-body systems by controlling their environment.
When an extended system is coupled at its opposite boundaries to two reservoirs at different temperatures or chemical potentials, it cannot achieve a global thermal equilibrium and is instead driven to a set of current-carrying nonequilibrium states. Despite the broad relevance of such a scenario to metallic systems, there have been limited investigations of the entanglement structure of the resulting long-time states, in part, due to the fundamental difficulty in solving realistic models for disordered, interacting electrons. We investigate this problem by carefully analyzing two toy models for coherent quantum transport of diffusive fermions: the celebrated three-dimensional, noninteracting Anderson model and a class of random quantum circuits acting on a chain of qubits, which exactly maps to a diffusive, interacting fermion problem. Crucially, the random circuit model can also be tuned to have no interactions between the fermions, similar to the Anderson model. We show that the long-time states of driven noninteracting fermions exhibit volume-law mutual information and entanglement, both for our random circuit model and for the nonequilibrium steady-state of the Anderson model. With interactions, the random circuit model is quantum chaotic and approaches local equilibrium, with only short-range entanglement. These results provide a generic picture for the emergence of local equilibrium in current-driven quantum-chaotic systems, and also provide examples of stable, highly-entangled many-body states out of equilibrium. We discuss experimental techniques to probe these effects in low-temperature mesoscopic wires or ultracold atomic gases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا