ﻻ يوجد ملخص باللغة العربية
Magnetic fields in galaxies exist on various spatial scales. Large-scale magnetic fields are thought to be generated by the $alpha-Omega$ dynamo. Small-scale galactic magnetic fields (1 kpc and below) can be generated by tangling the large-scale field or by the small-scale turbulent dynamo. The analysis of field structures with the help of polarized radio continuum emission is hampered by the effect of Faraday dispersion (due to fluctuations in magnetic field and/or thermal electron density) that shifts signals from large to small scales. At long observation wavelengths large-scale magnetic fields may become invisible, as in the case of spectro-polarimetric data cube of the spiral galaxy NGC~6946 observed with the Westerbork Radio Synthesis Telescope in the wavelength range 17-23 cm. The application of RM Synthesis alone does not overcome this problem. We propose to decompose the Faraday data cube into data cubes at different spatial scales by a wavelet transform. Signatures of the `magnetic arms observed in NGC~6946 at shorter wavelengths become visible. Our method allows us to search for large-scale field patterns in data cubes at long wavelengths, as provided by new-generation radio telescopes.
The radio sky at lower frequencies, particularly below 20 MHz, is expected to be a combination of increasingly bright non-thermal emission and significant absorption from intervening thermal plasma. The sky maps at these frequencies cannot therefore
We present a sample of 1,483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky su
The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extreme
We have used archival 74 MHz VLA data spanning the last 15 years in combination with new data from the Long Wavelength Demonstrator Array (LWDA) and data from the literature covering the last 50 years to explore the evolution of Cas A at low radio fr
Spectral variability of radio sources encodes information about the conditions of intervening media, source structure, and emission processes. With new low-frequency radio interferometers observing over wide fractional bandwidths, studies of spectral