ﻻ يوجد ملخص باللغة العربية
We study the number $P(n)$ of partitions of an integer $n$ into sums of distinct squares and derive an integral representation of the function $P(n)$. Using semi-classical and quantum statistical methods, we determine its asymptotic average part $P_{as}(n)$, deriving higher-order contributions to the known leading-order expression [M. Tran {it et al.}, Ann. Phys. (N.Y.) {bf 311}, 204 (2004)], which yield a faster convergence to the average values of the exact $P(n)$. From the Fourier spectrum of $P(n)$ we obtain hints that integer-valued frequencies belonging to the smallest Pythagorean triples $(m,p,q)$ of integers with $m^2+p^2=q^2$ play an important role in the oscillations of $P(n)$. Finally we analyze the oscillating part $delta P(n)=P(n)-P_{as}(n)$ in the spirit of semi-classical periodic orbit theory [M. Brack and R. K. Bhaduri: {it Semiclassical Physics} (Bolder, Westview Press, 2003)]. A semi-classical trace formula is derived which accurately reproduces the exact $delta P(n)$ for $n > sim 500$ using 10 pairs of `orbits. For $n > sim 4000$ only two pairs of orbits with the frequencies 4 and 5 -- belonging to the lowest Pythagorean triple (3,4,5) -- are relevant and create the prominent beating pattern in the oscillations. For $n > sim 100,000$ the beat fades away and the oscillations are given by just one pair of orbits with frequency 4.
We consider a random walk on the fully-connected lattice with $N$ sites and study the time evolution of the number of distinct sites $s$ visited by the walker on a subset with $n$ sites. A record value $v$ is obtained for $s$ at a record time $t$ whe
The probability distribution of the number $s$ of distinct sites visited up to time $t$ by a random walk on the fully-connected lattice with $N$ sites is first obtained by solving the eigenvalue problem associated with the discrete master equation. T
We justify WKB analysis for Hartree equation in space dimension at least three, in a regime which is supercritical as far as semiclassical analysis is concerned. The main technical remark is that the nonlinear Hartree term can be considered as a semi
In the present work, we discuss how the functional form of thermodynamic observables can be deduced from the geometric properties of subsets of phase space. The geometric quantities taken into account are mainly extrinsic curvatures of the energy lev
We introduce a model of the quantum Brownian motion coupled to a classical neat bath by using the operator differential proposed in the quantum analysis. We then define the heat operator by adapting the idea of the stochastic energetics. The introduc