ﻻ يوجد ملخص باللغة العربية
In this letter we give fourth-order autonomous recurrence relations with two invariants, whose degree growth is cubic or exponential. These examples contradict the common belief that maps with sufficiently many invariants can have at most quadratic growth. Cubic growth may reflect the existence of non-elliptic fibrations of invariants, whereas we conjecture that the exponentially growing cases lack the necessary conditions for the applicability of the discrete Liouville theorem.
In this paper we present a class of four-dimensional bi-rational maps with two invariants satisfying certain constraints on degrees. We discuss the integrability properties of these maps from the point of view of degree growth and Liouville integrability.
We provide new examples of integrable rational maps in four dimensions with two rational invariants, which have unexpected geometric properties, as for example orbits confined to non algebraic varieties, and fall outside classes studied by earlier au
We prove that integrability of a dispersionless Hirota type equation implies the symplectic Monge-Ampere property in any dimension $geq 4$. In 4D this yields a complete classification of integrable dispersionless PDEs of Hirota type through a list of
We derive and analyze a three dimensional model of a figure skater. We model the skater as a three-dimensional body moving in space subject to a non-holonomic constraint enforcing movement along the skates direction and holonomic constraints of conti
Geometric structures underlying commutative and non commutative integrable dynamics are analyzed. They lead to a new characterization of noncommutative integrability in terms of spectral properties and of Nijenhuis torsion of an invariant (1,1) tenso