ترغب بنشر مسار تعليمي؟ اضغط هنا

DG structures on odd categorified quantum sl(2)

66   0   0.0 ( 0 )
 نشر من قبل Aaron Lauda
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We equip Ellis and Brundans version of the odd categorified quantum group for sl(2) with a differential giving it the structure of a graded dg-2-supercategory. The presence of the super grading gives rise to two possible decategorifications of the associated dg-2-category. One version gives rise to a categorification of quantum sl(2) at a fourth root of unity, while the other version produces a subalgebra of quantum gl(1|1) defined over the integers. Both of these algebras appear in connection with quantum algebraic approaches to the Alexander polynomial.



قيم البحث

اقرأ أيضاً

We develop the rewriting theory for monoidal supercategories and 2-supercategories. This extends the theory of higher-dimensional rewriting established for (linear) 2-categories to the super setting, providing a suite of tools for constructing bases and normal forms for 2-supercategories given by generators and relations. We then employ this newly developed theory to prove the non-degeneracy conjecture for the odd categorification of quantum sl(2) from arXiv:1307.7816 and arXiv:1701.04133. As a corollary, this gives a classification of dg-structures on the odd 2-category conjectured in arXiv:1808.04924.
We study monoidal categorifications of certain monoidal subcategories $mathcal{C}_J$ of finite-dimensional modules over quantum affine algebras, whose cluster algebra structures coincide and arise from the category of finite-dimensional modules over quiver Hecke algebra of type A${}_infty$. In particular, when the quantum affine algebra is of type A or B, the subcategory coincides with the monoidal category $mathcal{C}_{mathfrak{g}}^0$ introduced by Hernandez-Leclerc. As a consequence, the modules corresponding to cluster monomials are real simple modules over quantum affine algebras.
This is the first part of a series of two papers aiming to construct a categorification of the braiding on tensor products of Verma modules, and in particular of the Lawrence--Krammer--Bigelow representations. In this part, we categorify all tensor products of Verma modules and integrable modules for quantum $mathfrak{sl_2}$. The categorification is given by derived categories of
85 - E. Feigin 2006
In this paper we study an approximation of tensor product of irreducible integrable $hat{mathfrak{sl}_2}$ representations by infinite fusion products. This gives an approximation of the corresponding coset theories. As an application we represent cha racters of spaces of these theories as limits of certain restricted Kostka polynomials. This leads to the bosonic (which is known) and fermionic (which is new) formulas for the $hat{mathfrak{sl}_2}$ branching functions.
Quantum field theory allows more general symmetries than groups and Lie algebras. For instance quantum groups, that is Hopf algebras, have been familiar to theoretical physicists for a while now. Nowdays many examples of symmetries of categorical fla vor -- categorical groups, groupoids, Lie algebroids and their higher analogues -- appear in physically motivated constructions and faciliate constructions of geometrically sound models and quantization of field theories. Here we consider two flavours of categorified symmetries: one coming from noncommutative algebraic geometry where varieties themselves are replaced by suitable categories of sheaves; another in which the gauge groups are categorified to higher groupoids. Together with their gauge groups, also the fiber bundles themselves become categorified, and their gluing (or descent data) is given by nonabelian cocycles, generalizing group cohomology, where infinity-groupoids appear in the role both of the domain and the coefficient object. Such cocycles in particular represent higher principal bundles, gerbes, -- possibly equivariant, possibly with connection -- as well as the corresponding associated higher vector bundles. We show how the Hopf algebra known as the Drinfeld double arises in this context. This article is an expansion of a talk that the second author gave at the 5th Summer School of Modern Mathematical Physics in 2008.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا