ﻻ يوجد ملخص باللغة العربية
In recent time, applications of network embedding in mining real-world information network have been widely reported in the literature. Majority of the information networks are heterogeneous in nature. Meta-path is one of the popularly used approaches for generating embedding in heterogeneous networks. As meta-path guides the models towards a specific sub-structure, it tends to lose some hetero- geneous characteristics inherently present in the underlying network. In this paper, we systematically study the effects of different meta-paths using different state-of-art network embedding methods (Metapath2vec, Node2vec, and VERSE) over DBLP bibliographic network and evaluate the performance of embeddings using two applications (co-authorship prediction and authors research area classification tasks). From various experimental observations, it is evident that embedding using different meta-paths perform differently over different tasks. It shows that meta- paths are task-dependent and can not be generalized for different tasks. We further observe that embedding obtained after considering all the node and relation types in bibliographic network outperforms its meta- path based counterparts.
Meta-graph is currently the most powerful tool for similarity search on heterogeneous information networks,where a meta-graph is a composition of meta-paths that captures the complex structural information. However, current relevance computing based
Networks found in the real-world are numerous and varied. A common type of network is the heterogeneous network, where the nodes (and edges) can be of different types. Accordingly, there have been efforts at learning representations of these heteroge
Most real-world data can be modeled as heterogeneous information networks (HINs) consisting of vertices of multiple types and their relationships. Search for similar vertices of the same type in large HINs, such as bibliographic networks and business
Sampling a network is an important prerequisite for unsupervised network embedding. Further, random walk has widely been used for sampling in previous studies. Since random walk based sampling tends to traverse adjacent neighbors, it may not be suita
The real-world networks often compose of different types of nodes and edges with rich semantics, widely known as heterogeneous information network (HIN). Heterogeneous network embedding aims to embed nodes into low-dimensional vectors which capture r