ﻻ يوجد ملخص باللغة العربية
We show that when a solid plasma foil with a density gradient on the front surface is irradiated by an intense laser pulse at a grazing angle, around 80 degrees, a relativistic electron vortex is excited in the near-critical-density layer after the laser pulse depletion. The vortex structure and dynamics are studied using particle-in-cell simulations. Due to the asymmetry introduced by nonuniform background density, the vortex drifts at a constant velocity, typically 0.2 to 0.3 times the speed of light. The strong magnetic field inside the vortex leads to significant charge separation; in the corresponding electric field initially stationary protons can be captured and accelerated to twice the velocity of the vortex (100-200 MeV). A representative scenario - with laser intensity of 10^21 W/cm^2 -is discussed: two dimensional simulations suggest that a quasi-monoenergetic proton beam can be obtained with a mean energy 140 MeV and an energy spread of about 10%. We derive an analytical estimate for the vortex velocity in terms of laser and plasma parameters, demonstrating that the maximum proton energy can be controlled by the incidence angle of the laser and the plasma density gradient.
The interaction of ultraintense laser pulses with solids is largely affected by the plasma gradient at the vacuum-solid interface, which modifies the absorption and ultimately, controls the energy distribution function of heated electrons. A micromet
We report experimental evidence that multi-MeV protons accelerated in relativistic laser-plasma interactions are modulated by strong filamentary electromagnetic fields. Modulations are observed when a preplasma is developed on the rear side of a $mu$
Magnetic Vortex Acceleration (MVA) from near critical density targets is one of the promising schemes of laser-driven ion acceleration. 3D particle-in-cell simulations are used to explore a more extensive laser-target parameter space than previously
A remarkable ion energy increase is demonstrated by several-stage post-acceleration in a laser plasma interaction. Intense short-pulse laser generates a strong current by high-energy electrons accelerated, when an intense short-pulse laser illuminate
The interaction of ultrashort, high intensity laser pulses with thin foil targets leads to ion acceleration on the target rear surface. To make this ion source useful for applications, it is important to optimize the transfer of energy from the laser