ﻻ يوجد ملخص باللغة العربية
Semiconductor nanowires (NWs) are promising for realizing various on-chip nonlinear optical devices, due to their nanoscale lateral confinement and strong light-matter interaction. However, high-intensity pulsed pump lasers are typically needed to exploit their optical nonlinearity because light couples poorly with nanometric-size wires. Here, we demonstrate microwatts continuous-wave light pumped second harmonic generation (SHG) in AlGaAs NWs by integrating them with silicon planar photonic crystal cavities. Light-NW coupling is enhanced effectively by the extremely localized cavity mode at the subwavelength scale. Strong SHG is obtained even with a continuous-wave laser excitation with a pump power down to ~3 uW, and the cavity-enhancement factor is estimated around 150. Additionally, in the integrated device, the NWs SHG is more than two-order of magnitude stronger than third harmonic generations in the silicon slab, though the NW only couple s with less than 1% of the cavity mode. This significantly reduced power-requirement of NWs nonlinear frequency conversion would promote NW-based building blocks for nonlinear optics, specially in chip-integrated coherent light sources, entangled photon-pairs and signal processing devices.
We demonstrate second harmonic generation in photonic crystal nanocavities fabricated in the semiconductor gallium phosphide. We observe second harmonic radiation at 750 nm with input powers of only nanowatts coupled to the cavity and conversion effi
Resonant metasurfaces are an attractive platform for enhancing the non-linear optical processes, such as second harmonic generation (SHG), since they can generate very large local electromagnetic fields while relaxing the phase-matching requirements.
We model second harmonic generation in subwavelength III-V-on-insulator waveguides. The large index contrast induces strong longitudinal electric field components that play an important role in the nonlinear conversion. We show that many different wa
A scheme for active second harmonics generation is suggested. The system comprises $N$ three-level atoms in ladder configuration, situated into resonant cavity. It is found that the system can lase in either superradiant or subradiant regime, dependi
We report on the systematical study of the second-harmonic generation (SHG) in single zinc sulfide nanowires (ZnS NWs). The high quality ZnS NWs with round cross-section were fabricated by chemical vapor deposition method. The transmission electron m