ترغب بنشر مسار تعليمي؟ اضغط هنا

Looking Beyond a Clever Narrative: Visual Context and Attention are Primary Drivers of Affect in Video Advertisements

167   0   0.0 ( 0 )
 نشر من قبل Abhinav Shukla
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Emotion evoked by an advertisement plays a key role in influencing brand recall and eventual consumer choices. Automatic ad affect recognition has several useful applications. However, the use of content-based feature representations does not give insights into how affect is modulated by aspects such as the ad scene setting, salient object attributes and their interactions. Neither do such approaches inform us on how humans prioritize visual information for ad understanding. Our work addresses these lacunae by decomposing video content into detected objects, coarse scene structure, object statistics and actively attended objects identified via eye-gaze. We measure the importance of each of these information channels by systematically incorporating related information into ad affect prediction models. Contrary to the popular notion that ad affect hinges on the narrative and the clever use of linguistic and social cues, we find that actively attended objects and the coarse scene structure better encode affective information as compared to individual scene objects or conspicuous background elements.



قيم البحث

اقرأ أيضاً

In order to resonate with the viewers, many video advertisements explore creative narrative techniques such as Freytags pyramid where a story begins with exposition, followed by rising action, then climax, concluding with denouement. In the dramatic structure of ads in particular, climax depends on changes in sentiment. We dedicate our study to understand the dynamic structure of video ads automatically. To achieve this, we first crowdsource climax annotations on 1,149 videos from the Video Ads Dataset, which already provides sentiment annotations. We then use both unsupervised and supervised methods to predict the climax. Based on the predicted peak, the low-level visual and audio cues, and semantically meaningful context features, we build a sentiment prediction model that outperforms the current state-of-the-art model of sentiment prediction in video ads by 25%. In our ablation study, we show that using our context features, and modeling dynamics with an LSTM, are both crucial factors for improved performance.
Recent advances in image captioning task have led to increasing interests in video captioning task. However, most works on video captioning are focused on generating single input of aggregated features, which hardly deviates from image captioning pro cess and does not fully take advantage of dynamic contents present in videos. We attempt to generate video captions that convey richer contents by temporally segmenting the video with action localization, generating multiple captions from multiple frames, and connecting them with natural language processing techniques, in order to generate a story-like caption. We show that our proposed method can generate captions that are richer in contents and can compete with state-of-the-art method without explicitly using video-level features as input.
There is more to images than their objective physical content: for example, advertisements are created to persuade a viewer to take a certain action. We propose the novel problem of automatic advertisement understanding. To enable research on this pr oblem, we create two datasets: an image dataset of 64,832 image ads, and a video dataset of 3,477 ads. Our data contains rich annotations encompassing the topic and sentiment of the ads, questions and answers describing what actions the viewer is prompted to take and the reasoning that the ad presents to persuade the viewer (What should I do according to this ad, and why should I do it?), and symbolic references ads make (e.g. a dove symbolizes peace). We also analyze the most common persuasive strategies ads use, and the capabilities that computer vision systems should have to understand these strategies. We present baseline classification results for several prediction tasks, including automatically answering questions about the messages of the ads.
Inspired by human visual attention, we introduce a Maximum Entropy Deep Inverse Reinforcement Learning (MEDIRL) framework for modeling the visual attention allocation of drivers in imminent rear-end collisions. MEDIRL is composed of visual, driving, and attention modules. Given a front-view driving video and corresponding eye fixations from humans, the visual and driving modules extract generic and driving-specific visual features, respectively. Finally, the attention module learns the intrinsic task-sensitive reward functions induced by eye fixation policies recorded from attentive drivers. MEDIRL uses the learned policies to predict visual attention allocation of drivers. We also introduce EyeCar, a new driver visual attention dataset during accident-prone situations. We conduct comprehensive experiments and show that MEDIRL outperforms previous state-of-the-art methods on driving task-related visual attention allocation on the following large-scale driving attention benchmark datasets: DR(eye)VE, BDD-A, and DADA-2000. The code and dataset are provided for reproducibility.
Attention mechanisms, especially self-attention, have played an increasingly important role in deep feature representation for visual tasks. Self-attention updates the feature at each position by computing a weighted sum of features using pair-wise a ffinities across all positions to capture the long-range dependency within a single sample. However, self-attention has quadratic complexity and ignores potential correlation between different samples. This paper proposes a novel attention mechanism which we call external attention, based on two external, small, learnable, shared memories, which can be implemented easily by simply using two cascaded linear layers and two normalization layers; it conveniently replaces self-attention in existing popular architectures. External attention has linear complexity and implicitly considers the correlations between all data samples. We further incorporate the multi-head mechanism into external attention to provide an all-MLP architecture, external attention MLP (EAMLP), for image classification. Extensive experiments on image classification, object detection, semantic segmentation, instance segmentation, image generation, and point cloud analysis reveal that our method provides results comparable or superior to the self-attention mechanism and some of its variants, with much lower computational and memory costs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا