ترغب بنشر مسار تعليمي؟ اضغط هنا

Challenges with Large Transverse Momentum in Semi-Inclusive Deeply Inelastic Scattering

78   0   0.0 ( 0 )
 نشر من قبل Ted Rogers
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We survey the current phenomenological status of semi-inclusive deep inelastic scattering at moderate hard scales and in the limit of very large transverse momentum. As the transverse momentum becomes comparable to or larger than the overall hard scale, the differential cross sections should be calculable with fixed order pQCD methods, while small transverse momentum (TMD factorization) approximations should eventually break down. We find large disagreement between HERMES and COMPASS data and fixed order calculations done with modern parton densities, even in regions of kinematics where such calculations should be expected to be very accurate. Possible interpretations are suggested.



قيم البحث

اقرأ أيضاً

Motivated by recently observed tension between $Oleft(alpha_s^2right)$ calculations of very large transverse momentum dependence in both semi-inclusive deep inelastic scattering and Drell-Yan scattering, we repeat the details of the calculation throu gh $Oleft(alpha_s^2right)$ transversely differential cross section. The results confirm earlier calculations, and provide further support to the observation that tension exists with current parton distribution and fragmentation functions.
Different kinematical regimes of semi-inclusive deeply inelastic scattering (SIDIS) processes correspond to different underlying partonic pictures, and it is important to understand the transition between them. This is particularly the case when ther e is sensitivity to intrinsic transverse momentum, in which case kinematical details can become especially important. We address the question of how to identify the current fragmentation region --- the kinematical regime where a factorization picture with fragmentation functions is appropriate. We distinguish this from soft and target fragmentation regimes. Our criteria are based on the kinematic regions used in derivations of factorization theorems. We argue that, when hard scales are of order a few GeVs, there is likely significant overlap between different rapidity regions that are normally understood to be distinct. We thus comment on the need to take this into account with more unified descriptions of SIDIS, which should span all rapidities for the produced hadron. Finally, we propose general criteria for estimating the proximity to the current region at large Q.
The Sivers function is extracted from HERMES data on single spin asymmetries in semi-inclusive deeply inelastic scattering. The result is used for making predictions for the Sivers effect in the Drell-Yan process.
We derive mass corrections for semi-inclusive deep inelastic scattering of leptons from nucleons using a collinear factorization framework which incorporates the initial state mass of the target nucleon and the final state mass of the produced hadron . The formalism is constructed specifically to ensure that physical kinematic thresholds for the semi-inclusive process are explicitly respected. A systematic study of the kinematic dependencies of the mass corrections to semi-inclusive cross sections reveals that these are even larger than for inclusive structure functions, especially at very small and very large hadron momentum fractions. The hadron mass corrections compete with the experimental uncertainties at kinematics typical of current facilities, and will be important to efforts at extracting parton distributions or fragmentation functions from semi-inclusive processes at intermediate energies.
The spin-dependent cross sections for semi-inclusive lepton-nucleon scattering are derived in the framework of collinear factorization, including the effects of masses of the target and produced hadron at finite momentum transfer squared Q^2. At lead ing order the cross sections factorize into products of parton distribution and fragmentation functions evaluated in terms of new, mass-dependent scaling variables. The size of the hadron mass corrections is estimated at kinematics relevant for future semi-inclusive deep-inelastic scattering experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا