ﻻ يوجد ملخص باللغة العربية
We report the recent progress in relativistic mean-field (RMF) and beyond approaches for the low-energy structure of deformed hypernuclei. We show that the $Lambda$ hyperon with orbital angular momentum $ell=0$ (or $ell>1$) generally reduces (enhances) nuclear quadrupole collectivity. The beyond mean-field studies of hypernuclear low-lying states demonstrate that there is generally a large configuration mixing between the two components $[^{A-1}Z (I^+) otimes Lambda p_{1/2}]^J$ and $[^{A-1}Z (Ipm2 ^+) otimes Lambda p_{3/2}]^J$ in the hypernuclear $1/2^-_1, 3/2^-_1$ states. The mixing weight increases as the collective correlation of nuclear core becomes stronger. Finally, we show how the energies of hypernuclear low-lying states are sensitive to parameters in the effective $N Lambda $ interaction, the uncertainty of which has a large impact on the predicted maximal mass of neutron stars.
We develop both relativistic mean field and beyond approaches for hypernuclei with possible quadrupole-octupole deformation or pear-like shapes based on relativistic point-coupling energy density functionals. The symmetries broken in the mean-field s
Based on relativistic mean field (RMF) models, we study finite $Lambda$-hypernuclei and massive neutron stars. The effective $N$-$N$ interactions PK1 and TM1 are adopted, while the $N$-$Lambda$ interactions are constrained by reproducing the binding
New effective $Lambda N$ interactions are proposed for the density dependent relativistic mean field model. The multidimensionally constrained relativistic mean field model is used to calculate ground state properties of eleven known $Lambda$ hypernu
Deformed multi-$Lambda$ hypernuclei are studied within a relativistic mean-field model. In this paper, we take some $N=Z$ hyper isotope chains, i.e., $^{8+n}_{ nLambda}{rm Be}$, $^{20+n}_{ nLambda}{rm Ne}$, and $^{28+n}_{ nLambda}{rm Si}$ system
This research article is a follow up of earlier work by M. Ikram et al., reported in International Journal of Modern Physics E {bf{25}}, 1650103 (2016) wherein we searched for $Lambda$ magic numbers in experimentally confirmed doubly magic nucleonic