ترغب بنشر مسار تعليمي؟ اضغط هنا

Robot Safe Interaction System for Intelligent Industrial Co-Robots

144   0   0.0 ( 0 )
 نشر من قبل Changliu Liu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Human-robot interactions have been recognized to be a key element of future industrial collaborative robots (co-robots). Unlike traditional robots that work in structured and deterministic environments, co-robots need to operate in highly unstructured and stochastic environments. To ensure that co-robots operate efficiently and safely in dynamic uncertain environments, this paper introduces the robot safe interaction system. In order to address the uncertainties during human-robot interactions, a unique parallel planning and control architecture is proposed, which has a long term global planner to ensure efficiency of robot behavior, and a short term local planner to ensure real time safety under uncertainties. In order for the robot to respond immediately to environmental changes, fast algorithms are used for real-time computation, i.e., the convex feasible set algorithm for the long term optimization, and the safe set algorithm for the short term optimization. Several test platforms are introduced for safe evaluation of the developed system in the early phase of deployment. The effectiveness and the efficiency of the proposed method have been verified in experiment with an industrial robot manipulator.

قيم البحث

اقرأ أيضاً

Human-robot collaborations have been recognized as an essential component for future factories. It remains challenging to properly design the behavior of those co-robots. Those robots operate in dynamic uncertain environment with limited computation capacity. The design objective is to maximize their task efficiency while guaranteeing safety. This paper discusses a set of design principles of a safe and efficient robot collaboration system (SERoCS) for the next generation co-robots, which consists of robust cognition algorithms for environment monitoring, efficient task planning algorithms for reference generations, and safe motion planning and control algorithms for safe human-robot interactions. The proposed SERoCS will address the design challenges and significantly expand the skill sets of the co-robots to allow them to work safely and efficiently with their human counterparts. The development of SERoCS will create a significant advancement toward adoption of co-robots in various industries. The experiments validate the effectiveness of SERoCS.
Industrial standards define safety requirements for Human-Robot Collaboration (HRC) in industrial manufacturing. The standards particularly require real-time monitoring and securing of the minimum protective distance between a robot and an operator. In this work, we propose a depth-sensor based model for workspace monitoring and an interactive Augmented Reality (AR) User Interface (UI) for safe HRC. The AR UI is implemented on two different hardware: a projector-mirror setup anda wearable AR gear (HoloLens). We experiment the workspace model and UIs for a realistic diesel motor assembly task. The AR-based interactive UIs provide 21-24% and 57-64% reduction in the task completion and robot idle time, respectively, as compared to a baseline without interaction and workspace sharing. However, subjective evaluations reveal that HoloLens based AR is not yet suitable for industrial manufacturing while the projector-mirror setup shows clear improvements in safety and work ergonomics.
103 - D. Wuthier 2021
The application of robotic solutions to small-batch production is challenging: economical constraints tend to dramatically limit the time for setting up new batches. Organizing robot tasks into modular software components, called skills, and allowing the assignment of multiple concurrent tasks to a single robot is potentially game-changing. However, due to cycle time constraints, it may be necessary for a skill to take over without waiting on another to terminate, and the available literature lacks a systematic approach in this case. In the present article, we fill the gap by (a) establishing the specifications of skills that can be sequenced with partial executions, (b) proposing an implementation based on the combination of finite-state machines and behavior trees, and (c) demonstrating the benefits of such skills through extensive trials in the environment of ARIAC (Agile Robotics for Industrial Automation Competition).
The coordinated assurance of interrelated critical properties, such as system safety and cyber-security, is one of the toughest challenges in critical systems engineering. In this chapter, we summarise approaches to the coordinated assurance of safet y and security. Then, we highlight the state of the art and recent challenges in human-robot collaboration in manufacturing both from a safety and security perspective. We conclude with a list of procedural and technological issues to be tackled in the coordinated assurance of collaborative industrial robots.
Pruning is the art of cutting unwanted and unhealthy plant branches and is one of the difficult tasks in the field robotics. It becomes even more complex when the plant branches are moving. Moreover, the reproducibility of robot pruning skills is ano ther challenge to deal with due to the heterogeneous nature of vines in the vineyard. This research proposes a multi-modal framework to deal with the dynamic vines with the aim of sim2real skill transfer. The 3D models of vines are constructed in blender engine and rendered in simulated environment as a need for training the robot. The Natural Admittance Controller (NAC) is applied to deal with the dynamics of vines. It uses force feedback and compensates the friction effects while maintaining the passivity of system. The faster R-CNN is used to detect the spurs on the vines and then statistical pattern recognition algorithm using K-means clustering is applied to find the effective pruning points. The proposed framework is tested in simulated and real environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا