ﻻ يوجد ملخص باللغة العربية
Structure-preserved denoising of 3D magnetic resonance imaging (MRI) images is a critical step in medical image analysis. Over the past few years, many algorithms with impressive performances have been proposed. In this paper, inspired by the idea of deep learning, we introduce an MRI denoising method based on the residual encoder-decoder Wasserstein generative adversarial network (RED-WGAN). Specifically, to explore the structure similarity between neighboring slices, a 3D configuration is utilized as the basic processing unit. Residual autoencoders combined with deconvolution operations are introduced into the generator network. Furthermore, to alleviate the oversmoothing shortcoming of the traditional mean squared error (MSE) loss function, the perceptual similarity, which is implemented by calculating the distances in the feature space extracted by a pretrained VGG-19 network, is incorporated with the MSE and adversarial losses to form the new loss function. Extensive experiments are implemented to assess the performance of the proposed method. The experimental results show that the proposed RED-WGAN achieves performance superior to several state-of-the-art methods in both simulated and real clinical data. In particular, our method demonstrates powerful abilities in both noise suppression and structure preservation.
Purpose: Correcting or reducing the effects of voxel intensity non-uniformity (INU) within a given tissue type is a crucial issue for quantitative MRI image analysis in daily clinical practice. In this study, we present a deep learning-based approach
Generative Adversarial Networks (GAN) are trained to generate sample images of interest distribution. To this end, generator network of GAN learns implicit distribution of real data set from the classification with candidate generated samples. Recent
X-ray computed tomography (CT) is widely used in clinical practice. The involved ionizing X-ray radiation, however, could increase cancer risk. Hence, the reduction of the radiation dose has been an important topic in recent years. Few-view CT image
Fingerprint image denoising is a very important step in fingerprint identification. to improve the denoising effect of fingerprint image,we have designs a fingerprint denoising algorithm based on deep encoder-decoder network,which encoder subnet to l
This chapter reviews recent developments of generative adversarial networks (GAN)-based methods for medical and biomedical image synthesis tasks. These methods are classified into conditional GAN and Cycle-GAN according to the network architecture de