ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust high dimensional factor models with applications to statistical machine learning

64   0   0.0 ( 0 )
 نشر من قبل Ziwei Zhu
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Factor models are a class of powerful statistical models that have been widely used to deal with dependent measurements that arise frequently from various applications from genomics and neuroscience to economics and finance. As data are collected at an ever-growing scale, statistical machine learning faces some new challenges: high dimensionality, strong dependence among observed variables, heavy-tailed variables and heterogeneity. High-dimensional robust factor analysis serves as a powerful toolkit to conquer these challenges. This paper gives a selective overview on recent advance on high-dimensional factor models and their applications to statistics including Factor-Adjusted Robust Model selection (FarmSelect) and Factor-Adjusted Robust Multiple testing (FarmTest). We show that classical methods, especially principal component analysis (PCA), can be tailored to many new problems and provide powerful tools for statistical estimation and inference. We highlight PCA and its connections to matrix perturbation theory, robust statistics, random projection, false discovery rate, etc., and illustrate through several applications how insights from these fields yield solutions to modern challenges. We also present far-reaching connections between factor models and popular statistical learning problems, including network analysis and low-rank matrix recovery.



قيم البحث

اقرأ أيضاً

While model selection is a well-studied topic in parametric and nonparametric regression or density estimation, selection of possibly high-dimensional nuisance parameters in semiparametric problems is far less developed. In this paper, we propose a s elective machine learning framework for making inferences about a finite-dimensional functional defined on a semiparametric model, when the latter admits a doubly robust estimating function and several candidate machine learning algorithms are available for estimating the nuisance parameters. We introduce two new selection criteria for bias reduction in estimating the functional of interest, each based on a novel definition of pseudo-risk for the functional that embodies the double robustness property and thus is used to select the pair of learners that is nearest to fulfilling this property. We establish an oracle property for a multi-fold cross-validation version of the new selection criteria which states that our empirical criteria perform nearly as well as an oracle with a priori knowledge of the pseudo-risk for each pair of candidate learners. We also describe a smooth approximation to the selection criteria which allows for valid post-selection inference. Finally, we apply the approach to model selection of a semiparametric estimator of average treatment effect given an ensemble of candidate machine learners to account for confounding in an observational study.
85 - Yue Yang , Ryan Martin 2020
In high-dimensions, the prior tails can have a significant effect on both posterior computation and asymptotic concentration rates. To achieve optimal rates while keeping the posterior computations relatively simple, an empirical Bayes approach has r ecently been proposed, featuring thin-tailed conjugate priors with data-driven centers. While conjugate priors ease some of the computational burden, Markov chain Monte Carlo methods are still needed, which can be expensive when dimension is high. In this paper, we develop a variational approximation to the empirical Bayes posterior that is fast to compute and retains the optimal concentration rate properties of the original. In simulations, our method is shown to have superior performance compared to existing variational approximations in the literature across a wide range of high-dimensional settings.
406 - Jingfei Zhang , Yi Li 2020
Though Gaussian graphical models have been widely used in many scientific fields, limited progress has been made to link graph structures to external covariates because of substantial challenges in theory and computation. We propose a Gaussian graphi cal regression model, which regresses both the mean and the precision matrix of a Gaussian graphical model on covariates. In the context of co-expression quantitative trait locus (QTL) studies, our framework facilitates estimation of both population- and subject-level gene regulatory networks, and detection of how subject-level networks vary with genetic variants and clinical conditions. Our framework accommodates high dimensional responses and covariates, and encourages covariate effects on both the mean and the precision matrix to be sparse. In particular for the precision matrix, we stipulate simultaneous sparsity, i.e., group sparsity and element-wise sparsity, on effective covariates and their effects on network edges, respectively. We establish variable selection consistency first under the case with known mean parameters and then a more challenging case with unknown means depending on external covariates, and show in both cases that the convergence rate of the estimated precision parameters is faster than that obtained by lasso or group lasso, a desirable property for the sparse group lasso estimation. The utility and efficacy of our proposed method is demonstrated through simulation studies and an application to a co-expression QTL study with brain cancer patients.
Robust real-time monitoring of high-dimensional data streams has many important real-world applications such as industrial quality control, signal detection, biosurveillance, but unfortunately it is highly non-trivial to develop efficient schemes due to two challenges: (1) the unknown sparse number or subset of affected data streams and (2) the uncertainty of model specification for high-dimensional data. In this article, motivated by the detection of smaller persistent changes in the presence of larger transient outliers, we develop a family of efficient real-time robust detection schemes for high-dimensional data streams through monitoring feature spaces such as PCA or wavelet coefficients when the feature coefficients are from Tukey-Hubers gross error models with outliers. We propose to construct a new local detection statistic for each feature called $L_{alpha}$-CUSUM statistic that can reduce the effect of outliers by using the Box-Cox transformation of the likelihood function, and then raise a global alarm based upon the sum of the soft-thresholding transformation of these local $L_{alpha}$-CUSUM statistics so that to filter out unaffected features. In addition, we propose a new concept called false alarm breakdown point to measure the robustness of online monitoring schemes, and also characterize the breakdown point of our proposed schemes. Asymptotic analysis, extensive numerical simulations and case study of nonlinear profile monitoring are conducted to illustrate the robustness and usefulness of our proposed schemes.
266 - Zijian Guo 2020
Heterogeneity is an important feature of modern data sets and a central task is to extract information from large-scale and heterogeneous data. In this paper, we consider multiple high-dimensional linear models and adopt the definition of maximin eff ect (Meinshausen, B{u}hlmann, AoS, 43(4), 1801--1830) to summarize the information contained in this heterogeneous model. We define the maximin effect for a targeted population whose covariate distribution is possibly different from that of the observed data. We further introduce a ridge-type maximin effect to simultaneously account for reward optimality and statistical stability. To identify the high-dimensional maximin effect, we estimate the regression covariance matrix by a debiased estimator and use it to construct the aggregation weights for the maximin effect. A main challenge for statistical inference is that the estimated weights might have a mixture distribution and the resulted maximin effect estimator is not necessarily asymptotic normal. To address this, we devise a novel sampling approach to construct the confidence interval for any linear contrast of high-dimensional maximin effects. The coverage and precision properties of the proposed confidence interval are studied. The proposed method is demonstrated over simulations and a genetic data set on yeast colony growth under different environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا