ﻻ يوجد ملخص باللغة العربية
We present continuum and molecular line (CO, C$^{18}$O, HCO$^+$) observations carried out with the Atacama Large Millimeter/submillimeter Array toward the water fountain star IRAS 15103-5754, an object that could be the youngest PN known. We detect two continuum sources, separated by $0.39pm 0.03$ arcsec. The emission from the brighter source seems to arise mainly from ionized gas, thus confirming the PN nature of the object. The molecular line emission is dominated by a circumstellar torus with a diameter of $simeq 0.6$ arcsec (2000 au) and expanding at $simeq 23$ km s$^{-1}$. We see at least two gas outflows. The highest-velocity outflow (deprojected velocities up to 250 km s$^{-1}$), traced by the CO lines, shows a biconical morphology, whose axis is misaligned $simeq 14^circ$ with respect to the symmetry axis of the torus, and with a different central velocity (by $simeq 8$ km s$^{-1}$). An additional high-density outflow (traced by HCO$^+$) is oriented nearly perpendicular to the torus. We speculate that IRAS 15103-5754 was a triple stellar system that went through a common envelope phase, and one of the components was ejected in this process. A subsequent low-collimation wind from the remaining binary stripped out gas from the torus, creating the conical outflow. The high velocity of the outflow suggests that the momentum transfer from the wind was extremely efficient, or that we are witnessing a very energetic mass-loss event.
The beginning of photoionization marks the transition between the post-Asymptotic Giant Branch (post-AGB) and planetary nebula (PN) phases of stars with masses < 8 M_sun. This critical phase is difficult to observe, as it lasts only a few decades. Th
We investigate the circumstellar dust properties of the oxygen-rich bipolar proto-planetary nebula IRAS 18276-1431 by means of two-dimensional radiative transfer simulations of the circumstellar dust shell. The model geometry is assumed to have a tor
We have mapped 12CO J=3-2 and other molecular lines from the water-fountain bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ~0.35 resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high-
We present high-angular-resolution {it Hubble Space Telescope (HST)} optical and near-infrared imaging of the compact planetary nebula (PN) IRAS 21282+5050. Optical images of this object reveal several complex morphological structures including three
Current models predict that binary interactions are a major ingredient for the formation of bipolar planetary nebulae (PNe) and pre-planetary nebulae (PPNe). Despite years of radial velocity (RV) monitoring, the paucity of known binaries amongst the