ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning the Aharonov-Bohm effect with dephasing in nonequilibrium transport

99   0   0.0 ( 0 )
 نشر من قبل Georg Engelhardt
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Aharanov-Bohm (AB) effect, which predicts that a magnetic field strongly influences the wave function of an electrically charged particle, is investigated in a three site system in terms of the quantum control by an additional dephasing source. The AB effect leads to a non-monotonic dependence of the steady-state current on the gauge phase associated with the molecular ring. This dependence is sensitive to site energy, temperature, and dephasing, and can be explained using the concept of the dark state. Although the phase effect vanishes in the steady-state current for strong dephasing, the phase dependence remains visible in an associated waiting-time distribution, especially at short times. Interestingly, the phase rigidity (i.e., the symmetry of the AB phase) observed in the steady-state current is now broken in the waiting-time statistics, which can be explained by the interference between transfer pathways.



قيم البحث

اقرأ أيضاً

We investigate the non-Abelian Aharonov-Bohm (AB) effect for time-dependent gauge fields. We prove that the non-Abelian AB phase shift related to time-dependent gauge fields, in which the electric and magnetic fields are written in the adjoint repres entation of $SU(N)$ generators, vanishes up to the first order expansion of the phase factor. Therefore, the flux quantization in a superconductor ring does not appear in the time-dependent Abelian or non-Abelian AB effect.
66 - de-Hone Lin 2003
Partial wave theory of a two dimensional scattering problem for an arbitray short range potential and a nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a ``hard disk like potential and the magnetic flux is examined. Sin ce the nonlocal influence of magnetic flux on the charged particles is universal, the nonlocal effect in hard disk case is expected to appear in quite general potential system and will be useful in understanding some phenomena in mesoscopic phyiscs.
57 - A M Stewart 2016
When the magnetic vector potential is expressed in terms of the magnetic field it, is found to be explicitly non-local in space. This gives support to the conclusions of Aharonov et al. in a recent comment, that the Aharonov-Bohm effect may be interp reted as being either due to a local gauge potential or else due to non-local gauge-invariant fields but not due to local gauge-invariant fields.
The Aharonov-Bohm effect is the prime example of a zero-field-strength configuration where a non-trivial vector potential acquires physical significance, a typical quantum mechanical effect. We consider an extension of the traditional A-B problem, by studying a two-dimensional medium filled with many point-like vortices. Systems like this might be present within a Type II superconducting layer in the presence of a strong magnetic field perpendicular to the layer, and have been studied in different limits. We construct an explicit solution for the wave function of a scalar particle moving within one such layer when the vortices occupy the sites of a square lattice and have all the same strength, equal to half of the flux quantum. From this construction we infer some general characteristics of the spectrum, including the conclusion that such a flux array produces a repulsive barrier to an incident low-energy charged particle, so that the penetration probability decays exponentially with distance from the edge.
In this paper, we present a novel semi-classical theory of the electrostatic and magnetostatic fields and explain the nonlocality problem in the context of the Aharonov-Bohm effect [1]. Specifically, we show that the electrostatic and the magnetostat ic fields possess a quantum nature that manifests if certain conditions are met. In particular, the wave amplitudes of the fields are seen to exist even in the regions where the classical fields vanish and they operate on the electron wave functions locally as unitary phases. This formulation also sheds light on the quantisation of electric charges and magnetic flux.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا