ﻻ يوجد ملخص باللغة العربية
Self-mode-locking has become an emerging path to the generation of ultrashort pulses with vertical-external-cavity surface-emitting lasers. In our work, a strong Kerr nonlinearity that is so far assumed to give rise to mode-locked operation is evidenced and a strong nonlinearity enhancement by the microcavity is revealed. We present wavelength-dependent measurements of the nonlinear absorption and nonlinear-refractive-index change in a gain chip using the Z-scan technique. We report negative nonlinear refraction up to 1.5E-11 cm2/W in magnitude in the (InGa)As/Ga(AsP) material system close to the laser design wavelength, which can lead to Kerr lensing. We show that by changing the angle of incidence of the probe beam with respect to the gain chip, the Kerr nonlinearity can be wavelength-tuned, shifting with the microcavity resonance. Such findings may ultimately lead to novel concepts with regard to tailored self-mode-locking behavior achievable by peculiar Kerr-lens chip designs for cost-effective, robust and compact fs-pulsed semiconductor lasers.
The role of coherent population oscillations is evidenced in the noise spectrum of an ultra-low noise lasers. This effect is isolated in the intensity noise spectrum of an optimized single-frequency vertical external cavity surface emitting laser. Th
A multiple quantum well (MQW) transistor vertical-cavity surface-emitting laser (T-VCSEL) is designed and numerically modeled. The important physical models and parameters are discussed and validated by modeling a conventional VCSEL and comparing the
Temporal Localized States (TLSs) are individually addressable structures traveling in optical resonators. They can be used as bits of information and to generate frequency combs with tunable spectral density. We show that a pair of specially designed
A microscopic study of mode-locked pulse generation is presented for vertical external-cavity surface-emitting lasers utilizing type-II quantum well configurations. The coupled Maxwell semiconductor Bloch equations are solved numerically where the ty
Microscopic many-body theory coupled to Maxwells equation is used to investigate dual-wavelength operation in vertical external-cavity surface-emitting lasers. The intrinsically dynamic nature of coexisting emission wavelengths in semiconductor laser