ﻻ يوجد ملخص باللغة العربية
The halos of disk galaxies form a crucial connection between the galaxy disk and the intergalactic medium. Massive stars, HII regions, or dwarf galaxies located in the halos of galaxies are potential tracers of recent accretion and/or outflows of gas, and are additional contributors to the photon field and the gas phase metallicity. We investigate the nature and origin of a star-forming dwarf galaxy candidate located in the halo of the edge-on Virgo galaxy NGC 4634 with a projected distance of 1.4 kpc and a H$alpha$ star formation rate of $sim 4.7 times 10^{-3} text{M}_odot text{yr}^{-1}$ in order to increase our understanding of these disk-halo processes. With optical long-slit spectra we measured fluxes of optical nebula emission lines to derive the oxygen abundance 12 + log(O/H) of an HII region in the disk of NGC 4634 and in the star-forming dwarf galaxy candidate. Abundances derived from optical long-slit data and from Hubble Space Telescope (HST) r-band data, H$alpha$ data, Giant Metrewave Radio Telescope (GMRT) HI data, and photometry of SDSS and GALEX data were used for further analysis. With additional probes of the luminosity-metallicity relation in the $B$-band from the H$alpha$-luminosity, the HI map, and the relative velocities, we are able to constrain a possible origin of the dwarf galaxy candidate. The high oxygen abundance (12 + log(O/H) $approx$ 8.72) of the dwarf galaxy candidate leads to the conclusion that it was formed from pre-enriched material. Analysis of auxiliary data shows that the dwarf galaxy candidate is composed of material originating from NGC 4634. We cannot determine whether this material has been ejected tidally or through other processes, which makes the system highly interesting for follow up observations.
We report the discovery of a UV-bright tidal dwarf galaxy candidate in the NGC 4631/4656 galaxy group, which we designate NGC 4656UV. Using survey and archival data spanning from 1.4 GHz to the ultraviolet we investigate the gas kinematics and stella
ABRIGED: Quantifying the number, type and distribution of W-R stars is a key component in the context of galaxy evolution, since they put constraints on the age of the star formation bursts. Nearby galaxies (d<5 Mpc) are particularly relevant in this
We report the discovery of the most metal-poor dwarf star-forming galaxy (SFG) known to date, J0811+4730. This galaxy, at a redshift z=0.04444, has a Sloan Digital Sky Survey (SDSS) g-band absolute magnitude M_g = -15.41 mag. It was selected by inspe
Star forming dwarf galaxies (SFDGs) have a high gas content and low metallicities, reminiscent of the basic entities in hierarchical galaxy formation scenarios. In the young universe they probably also played a major role in the cosmic reionization.
We present new HI spectral line images of the nearby low-mass galaxy NGC 5238, acquired with the Karl G. Jansky Very Large Array (VLA). Located at a distance of 4.51+/-0.04 Mpc, NGC 5238 is an actively star-forming galaxy with widespread H-alpha and