ﻻ يوجد ملخص باللغة العربية
A method evaluating the sensitivity of a given parameter to topological changes is proposed within the method of moments paradigm. The basis functions are used as degrees of freedom which, when compared to the classical pixeling technique, provide important advantages, one of them being impedance matrix inversion free evaluation of the sensitivity. The devised procedure utilizes port modes and their superposition which, together with only a single evaluation of all matrix operators, leads to a computationally effective procedure. The proposed method is approximately one hundred times faster than contemporary approaches, which allows the investigation of the sensitivity and the modification of shapes in real-time. The method is compared with known approaches and its validity and effectiveness is verified using a series of examples. The procedure can be implemented in up-to-date EM simulators in a straightforward manner. It is shown that the iterative repetition of the topology sensitivity evaluation can be used for gradient-based topology synthesis. This technique can also be employed as a local step in global optimizers.
In this article, we study shape fitting problems, $epsilon$-coresets, and total sensitivity. We focus on the $(j,k)$-projective clustering problems, including $k$-median/$k$-means, $k$-line clustering, $j$-subspace approximation, and the integer $(j,
This paper presents a topology optimization approach for surface flows, which can represent the viscous and incompressible fluidic motions at the solid/liquid and liquid/vapor interfaces. The fluidic motions on such material interfaces can be describ
Graphene-based nanostructures exhibit a vast range of exciting electronic properties that are absent in extended graphene. For example, quantum confinement in carbon nanotubes and armchair graphene nanoribbons (AGNRs) leads to the opening of substant
3D data that contains rich geometry information of objects and scenes is valuable for understanding 3D physical world. With the recent emergence of large-scale 3D datasets, it becomes increasingly crucial to have a powerful 3D generative model for 3D
We propose a Quantum Non Demolition (QND) read-out scheme for a superconducting artificial atom coupled to a resonator in a circuit QED architecture, for which we estimate a very high measurement fidelity without Purcell effect limitations. The devic