ترغب بنشر مسار تعليمي؟ اضغط هنا

The first high-resolution observations of 37.7-, 38.3- and 38.5-GHz methanol masers

215   0   0.0 ( 0 )
 نشر من قبل Simon Ellingsen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Simon Ellingsen




اسأل ChatGPT حول البحث

We have used the Australia Telescope Compact Array (ATCA) to undertake the first high angular resolution observations of 37.7-GHz ($7_{-2} - 8_{-1}E$) methanol masers towards a sample of eleven high-mass star formation regions which host strong 6.7-GHz methanol masers. The 37.7-GHz methanol sites are coincident to within the astrometric uncertainty (0.4 arcseconds) with the 6.7-GHz methanol masers associated with the same star formation region. However, spatial and spectral comparison of the 6.7- and 37.7-GHz maser emission within individual sources shows that the 37.7-GHz masers are less often, or to a lesser degree co-spatial than are the 12.2-GHz and 6.7-GHz masers. We also made sensitive, high angular resolution observations of the 38.3- and 38.5-GHz class II methanol transitions ($6_{2} - 5_{3}A^{-}$ and $6_{2} - 5_{3}A^{+}$, respectively) and the 36.2-GHz ($4_{-1} - 3_{0}E$) class I methanol transition towards the same sample of eleven sources. The 37.7-, 38.3- and 38.5-GHz methanol masers are unresolved in the current observations, which implies a lower limit on the brightness temperature of the strongest masers of more than $10^6$K. We detected the 38.3-GHz methanol transition towards 7 sources, 5 of which are new detections and detected the 38.5-GHz transition towards 6 sources, 4 of which are new detections. We detected 36.2-GHz class I methanol masers towards all eleven sources, 6 of these are new detections for this transition, of which 4 sources do not have previously reported class I methanol masers from any transition.

قيم البحث

اقرأ أيضاً

214 - S. P. Ellingsen 2012
We have used the Australia Telescope National Facility Mopra 22-m antenna to search for 37.7-GHz (7(-2) - 8(-1}E) methanol masers towards a sample of thirty six class II methanol masers. The target sources are the most luminous class II methanol mase rs not previously searched for this transition, with isotropic peak 12.2-GHz maser luminosity greater than 250 Jy/kpc^2 and isotropic peak 6.7-GHz maser luminosity greater than 800 Jy/kpc^2. Seven new 37.7-GHz methanol masers were detected as a result of the search. The detection rate for 37.7-GHz methanol masers towards a complete sample of all such class II methanol maser sites south of declination -20 deg is at least 30 percent. The relatively high detection rate for this rare methanol transition is in line with previous predictions that the 37.7-GHz transition is associated with a late stage of the class II methanol maser phase of high-mass star formation. We find that there is a modest correlation between the ratio of the 6.7- and 37.7-GHz maser peak intensity and the 6.7- and 12.2-GHz maser peak intensity (correlation coefficient 0.63 in a log-log plot). We detected one new 38.3-GHz (6(2) - 5(3)A-) methanol maser towards G335.789+0.174. This is only the fourth source for which maser emission has been detected in this transition and it is the only one for which emission is not also observed in the 38.5-GHz 6(2) - 5(3)A+ transition.
78 - Y. W. Wu , Y. Xu , J. D. Pandian 2010
To investigate whether distinctions exist between low and high-luminosity Class II 6.7-GHz methanol masers, we have undertaken multi-line mapping observations of various molecular lines, including the NH3(1,1), (2,2), (3,3), (4,4) and 12CO(1-0) trans itions, towards a sample of 9 low-luminosity 6.7-GHz masers, and 12CO (1-0) observations towards a sample of 8 high-luminosity 6.7-GHz masers, for which we already had NH3 spectral line data. Emission in the NH3 (1,1), (2,2) and (3,3) transitions was detected in 8 out of 9 low-luminosity maser sources, in which 14 cores were identified. We derive densities, column densities, temperatures, core sizes and masses of both low and high-luminosity maser regions. Comparative analysis of the physical quantities reveals marked distinctions between the low-luminosity and high-luminosity groups: in general, cores associated with high-luminosity 6.7-GHz masers are larger and more massive than those traced by low-luminosity 6.7-GHz masers; regions traced by the high-luminosity masers have larger column densities but lower densities than those of the low-luminosity maser regions. Further, strong correlations between 6.7-GHz maser luminosity and NH3(1,1) and (2,2) line widths are found, indicating that internal motions in high-luminosity maser regions are more energetic than those in low-luminosity maser regions. A 12CO (1-0) outflow analysis also shows distinctions in that outflows associated with high-luminosity masers have wider line wings and larger sizes than those associated with low-luminosity masers.
22 GHz water and 6.7 GHz methanol masers are usually thought as signposts of early stages of high-mass star formation but little is known about their associations and the physical environments they occur in. The aim was to obtain accurate positions and morphologies of the water maser emission and relate them to the methanol maser emission recently mapped with Very Long Baseline Interferometry. A sample of 31 methanol maser sources was searched for 22 GHz water masers using the VLA and observed in the 6.7 GHz methanol maser line with the 32 m Torun dish simultaneously. Water maser clusters were detected towards 27 sites finding 15 new sources. The detection rate of water maser emission associated with methanol sources was as high as 71%. In a large number of objects (18/21) the structure of water maser is well aligned with that of the extended emission at 4.5 $mu$m confirming the origin of water emission from outflows. The sources with methanol emission with ring-like morphologies, which likely trace a circumstellar disk/torus, either do not show associated water masers or the distribution of water maser spots is orthogonal to the major axis of the ring. The two maser species are generally powered by the same high-mass young stellar object but probe different parts of its environment. The morphology of water and methanol maser emission in a minority of sources is consistent with a scenario that 6.7 GHz methanol masers trace a disc/torus around a protostar while the associated 22 GHz water masers arise in outflows. The majority of sources in which methanol maser emission is associated with the water maser appears to trace outflows. The two types of associations might be related to different evolutionary phases.
Class I methanol masers are believed to be produced in the shock-excited environment around star-forming regions. Many authors have argued that the appearance of various subsets of class I masers may be indicative of specific evolutionary stages of s tar formation or excitation conditions. Until recently, however, no major interferometer was capable of imaging the important 36 GHz transition. We report on Expanded Very Large Array observations of the 36 GHz methanol masers and Submillimeter Array observations of the 229 GHz methanol masers in DR21(OH), DR21N, and DR21W. The distribution of 36 GHz masers in the outflow of DR21(OH) is similar to that of the other class I methanol transitions, with numerous multitransition spatial overlaps. At the site of the main continuum source in DR21(OH), class I masers at 36 and 229 GHz are found in virtual overlap with class II 6.7 GHz masers. To the south of the outflow, the 36 GHz masers are scattered over a large region but usually do not appear coincident with 44 GHz masers. In DR21W we detect an S-curve signature in Stokes V that implies a large value of the magnetic field strength if interpreted as due to Zeeman splitting, suggesting either that class I masers may exist at higher densities than previously believed or that the direct Zeeman interpretation of S-curve Stokes V profiles in class I masers may be incorrect. We find a diverse variety of different maser phenomena in these sources, suggestive of differing physical conditions among them.
122 - K.L.J. Rygl 2009
Emission from the 6.7 GHz methanol maser transition is very strong, is relatively stable, has small internal motions, and is observed toward numerous massive star-forming regions in the Galaxy. Our goal is to perform high-precision astrometry using t his maser transition to obtain accurate distances to their host regions. Eight strong masers were observed during five epochs of VLBI observations with the European VLBI Network between 2006 June, and 2008 March. We report trigonometric parallaxes for five star-forming regions, with accuracies as good as $sim22 mathrm{mu}$as. Distances to these sources are $2.57^{+0.34}_{-0.27}$ kpc for ON 1, $0.776^{+0.104}_{-0.083}$ kpc for L 1206, $0.929^{+0.034}_{-0.033}$ kpc for L 1287, $2.38^{+0.13}_{-0.12}$ kpc for NGC 281-W, and $1.59^{+0.07}_{-0.06}$ kpc for S 255. The distances and proper motions yield the full space motions of the star-forming regions hosting the masers, and we find that these regions lag circular rotation on average by $sim$17 km s$^{-1}$, a value comparable to those found recently by similar studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا