ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Generative Modeling for Scene Synthesis via Hybrid Representations

154   0   0.0 ( 0 )
 نشر من قبل Zaiwei Zhang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a deep generative scene modeling technique for indoor environments. Our goal is to train a generative model using a feed-forward neural network that maps a prior distribution (e.g., a normal distribution) to the distribution of primary objects in indoor scenes. We introduce a 3D object arrangement representation that models the locations and orientations of objects, based on their size and shape attributes. Moreover, our scene representation is applicable for 3D objects with different multiplicities (repetition counts), selected from a database. We show a principled way to train this model by combining discriminator losses for both a 3D object arrangement representation and a 2D image-based representation. We demonstrate the effectiveness of our scene representation and the deep learning method on benchmark datasets. We also show the applications of this generative model in scene interpolation and scene completion.



قيم البحث

اقرأ أيضاً

We present a new, fast and flexible pipeline for indoor scene synthesis that is based on deep convolutional generative models. Our method operates on a top-down image-based representation, and inserts objects iteratively into the scene by predicting their category, location, orientation and size with separate neural network modules. Our pipeline naturally supports automatic completion of partial scenes, as well as synthesis of complete scenes. Our method is significantly faster than the previous image-based method and generates result that outperforms it and other state-of-the-art deep generative scene models in terms of faithfulness to training data and perceived visual quality.
105 - Jingbo Wang , Sijie Yan , Bo Dai 2021
We revisit human motion synthesis, a task useful in various real world applications, in this paper. Whereas a number of methods have been developed previously for this task, they are often limited in two aspects: focusing on the poses while leaving t he location movement behind, and ignoring the impact of the environment on the human motion. In this paper, we propose a new framework, with the interaction between the scene and the human motion taken into account. Considering the uncertainty of human motion, we formulate this task as a generative task, whose objective is to generate plausible human motion conditioned on both the scene and the human initial position. This framework factorizes the distribution of human motions into a distribution of movement trajectories conditioned on scenes and that of body pose dynamics conditioned on both scenes and trajectories. We further derive a GAN based learning approach, with discriminators to enforce the compatibility between the human motion and the contextual scene as well as the 3D to 2D projection constraints. We assess the effectiveness of the proposed method on two challenging datasets, which cover both synthetic and real world environments.
140 - Zhuoman Liu , Wei Jia , Ming Yang 2021
View synthesis aims to produce unseen views from a set of views captured by two or more cameras at different positions. This task is non-trivial since it is hard to conduct pixel-level matching among different views. To address this issue, most exist ing methods seek to exploit the geometric information to match pixels. However, when the distinct cameras have a large baseline (i.e., far away from each other), severe geometry distortion issues would occur and the geometric information may fail to provide useful guidance, resulting in very blurry synthesized images. To address the above issues, in this paper, we propose a novel deep generative model, called Self-Consistent Generative Network (SCGN), which synthesizes novel views from the given input views without explicitly exploiting the geometric information. The proposed SCGN model consists of two main components, i.e., a View Synthesis Network (VSN) and a View Decomposition Network (VDN), both employing an Encoder-Decoder structure. Here, the VDN seeks to reconstruct input views from the synthesized novel view to preserve the consistency of view synthesis. Thanks to VDN, SCGN is able to synthesize novel views without using any geometric rectification before encoding, making it easier for both training and applications. Finally, adversarial loss is introduced to improve the photo-realism of novel views. Both qualitative and quantitative comparisons against several state-of-the-art methods on two benchmark tasks demonstrated the superiority of our approach.
Population synthesis is concerned with the generation of synthetic yet realistic representations of populations. It is a fundamental problem in the modeling of transport where the synthetic populations of micro-agents represent a key input to most ag ent-based models. In this paper, a new methodological framework for how to grow pools of micro-agents is presented. The model framework adopts a deep generative modeling approach from machine learning based on a Variational Autoencoder (VAE). Compared to the previous population synthesis approaches, including Iterative Proportional Fitting (IPF), Gibbs sampling and traditional generative models such as Bayesian Networks or Hidden Markov Models, the proposed method allows fitting the full joint distribution for high dimensions. The proposed methodology is compared with a conventional Gibbs sampler and a Bayesian Network by using a large-scale Danish trip diary. It is shown that, while these two methods outperform the VAE in the low-dimensional case, they both suffer from scalability issues when the number of modeled attributes increases. It is also shown that the Gibbs sampler essentially replicates the agents from the original sample when the required conditional distributions are estimated as frequency tables. In contrast, the VAE allows addressing the problem of sampling zeros by generating agents that are virtually different from those in the original data but have similar statistical properties. The presented approach can support agent-based modeling at all levels by enabling richer synthetic populations with smaller zones and more detailed individual characteristics.
Nowadays it is prevalent to take features extracted from pre-trained deep learning models as image representations which have achieved promising classification performance. Existing methods usually consider either object-based features or scene-based features only. However, both types of features are important for complex images like scene images, as they can complement each other. In this paper, we propose a novel type of features -- hybrid deep features, for scene images. Specifically, we exploit both object-based and scene-based features at two levels: part image level (i.e., parts of an image) and whole image level (i.e., a whole image), which produces a total number of four types of deep features. Regarding the part image level, we also propose two new slicing techniques to extract part based features. Finally, we aggregate these four types of deep features via the concatenation operator. We demonstrate the effectiveness of our hybrid deep features on three commonly used scene datasets (MIT-67, Scene-15, and Event-8), in terms of the scene image classification task. Extensive comparisons show that our introduced features can produce state-of-the-art classification accuracies which are more consistent and stable than the results of existing features across all datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا