ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical properties variation across the green valley for local galaxies

133   0   0.0 ( 0 )
 نشر من قبل Xue Ge
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have selected a sample of nearby galaxies from Sloan Digital Sky Survey Data Release 7 (SDSS DR7) to investigate the physical properties variation from blue cloud to green valley to red sequence. The sample is limited in a narrow range in color-stellar mass diagram. After splitting green valley galaxies into two parts---a bluer green valley (green 1) and a redder one (green 2) and three stellar mass bins, we investigate the physical properties variation across the green valley region. Our main results are as following: (i) The percentages of pure bulge and bulge-dominated/elliptical galaxies increase gradually from blue cloud to red sequence while the percentages of pure disk and disk-dominated/spiral galaxies decrease gradually in all stellar mass bins and different environments; (ii) With the analysis of morphological and structural parameters (e.g., concentration (C) and the stellar mass surface density within the central 1Kpc ($Sigma_{1}$)), red galaxies show the most luminous and compact cores than both green valley and blue galaxies while blue galaxies show the opposite behavior in all stellar mass bins. (iii) A strong negative (positive) relationship between bulge-to-total light ratio (B/T) and specific star formation rate (sSFR) ($D_{4000}$) is found from blue to red galaxies. Our results indicate that the growth of bulge plays an important role when the galaxies change from the blue cloud, to green valley, and to the red sequence.



قيم البحث

اقرأ أيضاً

Using a sample of 472 local Universe (z<0.06) galaxies in the stellar mass range 10.25 < log M*/M_sun < 10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is sub-divided into red, green and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using KiDS and VIKING derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells and signs of merger activity for all systems. We find a significant surplus of rings ($2.3sigma$) and lenses ($2.9sigma$) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of $3.3sigma$ relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of ~44% which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ~20-30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant $3.0sigma$ surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley.
63 - M.N. Bremer 2018
We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and onto the red sequence. We select GAMA survey galaxies with $10.25<{rm log}(M_*/ M_odot)<10.75$ and $z<0.2$ classified according to their intrinsic $u^*-r^*$ colour. From single component Sersic fits, we find that the stellar mass-sensitive $K-$band profiles of red and green galaxy populations are very similar, while $g-$band profiles indicate more disk-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disk components and that the blue to red evolution is driven by colour change in the disk. Together, these strongly suggest that galaxies evolve from blue to red through secular disk fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical timescale for traversing the green valley $sim 1-2$~Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a r^ole in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disk galaxies that are insufficiently supplied with gas to maintain previous levels of disk star formation, eventually attaining passive colours. No single event is needed quench their star formation.
We test cosmological hydrodynamical simulations of galaxy formation regarding the properties of the Blue Cloud (BC), Green Valley (GV) and Red Sequence (RS), as measured on the 4000$small{ mathring {mathrm A}}$ break strength vs stellar mass plane at $z=0.1$. We analyse the RefL0100N1504 run of EAGLE and the TNG100 run of IllustrisTNG project, by comparing them with the Sloan Digital Sky Survey, while taking into account selection bias. Our analysis focuses on the GV, within stellar mass $log,mathrm{M_star/M_{odot}} simeq 10-11$, selected from the bimodal distribution of galaxies on the D$_n$(4000) vs stellar mass plane, following Angthopo et al. methodology. Both simulations match the fraction of AGN in the green-valley. However, they over-produce quiescent GV galaxies with respect to observations, with IllustrisTNG yielding a higher fraction of quiescent GV galaxies than EAGLE. In both, GV galaxies have older luminosity-weighted ages with respect to the SDSS, while a better match is found for mass-weighted ages. We find EAGLE GV galaxies quench their star formation early, but undergo later episodes of star formation, matching observations. In contrast, IllustrisTNG GV galaxies have a more extended SFH, and quench more effectively at later cosmic times, producing the excess of quenched galaxies in GV compared with SDSS, based on the 4000$small{ mathring {mathrm A}}$ break strength. These results suggest the AGN feedback subgrid physics, more specifically, the threshold halo mass for black hole input and the black hole seed mass, could be the primary cause of the over-production of quiescent galaxies found with respect to the observational constraints.
72 - S. Phillipps 2019
We explore the constraints that can be placed on the evolutionary timescales for typical low redshift galaxies evolving from the blue cloud through the green valley and onto the red sequence. We utilise galaxies from the GAMA survey with 0.1 < z < 0. 2 and classify them according to the intrinsic (u-r?) colours of their stellar populations, as determined by fits to their multi-wavelength spectral energy distributions. Using these fits to also determine stellar population ages and star formation timescales, we argue that our results are consistent with a green valley population dominated by galaxies that are simply decreasing their star formation (running out of gas) over a timescale of 2-4 Gyr which are seen at a specific epoch in their evolution (approximately 1.6 e-folding times after their peak in star formation). If their fitted star formation histories are extrapolated forwards, the green galaxies will further redden over time, until they attain the colours of a passive population. In this picture, no specific quenching event which cuts-off their star formation is required, though it remains possible that the decline in star formation in green galaxies may be expedited by internal or external forces. However, there is no evidence that green galaxies have recently changed their star formation timescales relative to their previous longer term star formation histories.
$require{mediawiki-texvc}$The green valley (GV) represents an important transitional state from actively star-forming galaxies to passively evolving systems. Its traditional definition, based on colour, rests on a number of assumptions that can be su bject to non-trivial systematics. In Angthopo et al. (2019), we proposed a new definition of the GV based on the 4000$AA$ break strength. In this paper, we explore in detail the properties of the underlying stellar populations by use of ~230 thousand high-quality spectra from the Sloan Digital Sky Survey (SDSS), contrasting our results with a traditional approach via dust-corrected colours. We explore high quality stacked SDSS spectra, and find a population trend that suggests a substantial difference between low- and high-mass galaxies, with the former featuring younger populations with star formation quenching, and the latter showing older (post-quenching) populations that include rejuvenation events. Subtle but measurable differences are found between a colour-based approach and our definition, especially as our selection of GV galaxies produces a cleaner stratification of the GV, with more homogeneous population properties within sections of the GV. Our definition based on 4000$AA$ break strength gives a clean representation of the transition to quiescence, easily measurable in the upcoming and future spectroscopic surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا