ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating the Nature of Late-Time High-Energy GRB Emission Through Joint FermiSwift Observations

111   0   0.0 ( 0 )
 نشر من قبل Daniel Kocevski
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use joint observations by the Neil Gehrels Swift X-ray Telescope (XRT) and the Fermi Large Area Telescope (LAT) of gamma-ray burst (GRB) afterglows to investigate the nature of the long-lived high-energy emission observed by Fermi LAT. Joint broadband spectral modeling of XRT and LAT data reveal that LAT nondetections of bright X-ray afterglows are consistent with a cooling break in the inferred electron synchrotron spectrum below the LAT and/or XRT energy ranges. Such a break is sufficient to suppress the high-energy emission so as to be below the LAT detection threshold. By contrast, LAT-detected bursts are best fit by a synchrotron spectrum with a cooling break that lies either between or above the XRT and LAT energy ranges. We speculate that the primary difference between GRBs with LAT afterglow detections and the non-detected population may be in the type of circumstellar environment in which these bursts occur, with late-time LAT detections preferentially selecting GRBs that occur in low wind-like circumburst density profiles. Furthermore, we find no evidence of high-energy emission in the LAT-detected population significantly in excess of the flux expected from the electron synchrotron spectrum fit to the observed X-ray emission. The lack of excess emission at high energies could be due to a shocked external medium in which the energy density in the magnetic field is stronger than or comparable to that of the relativistic electrons behind the shock, precluding the production of a dominant synchrotron self-Compton (SSC) component in the LAT energy range. Alternatively, the peak of the SSC emission could be beyond the 0.1-100 GeV energy range considered for this analysis.

قيم البحث

اقرأ أيضاً

The early optical emission of gamma-ray bursts gives an opportunity to understand the central engine and first stages of these events. About 30% of GRBs present flares whose origin is still a subject of discussion. We present optical photometry of GR B 180620A with the COATLI telescope and RATIR instrument. COATLI started to observe from the end of prompt emission at $T+39.3$~s and RATIR from $T+121.4$~s. We supplement the optical data with the X-ray light curve from emph{Swift}/XRT. %The optical and X-ray light curves show very unusual behavior with features clearly beyond the standard fireball model. We observe an optical flare from $T+110$ to $T+550$~s, with a temporal index decay $alpha_mathrm{O,decay}=1.32pm 0.01$, and a $Delta t/t=1.63$, which we interpret as the signature of a reverse shock component. After the initial normal decay the light curves show a long plateau from $T+500$ to $T+7800$~s both in X-rays and the optical before decaying again after an achromatic jet break at $T+7800$~s. Fluctuations are seen during the plateau phase in the optical. Adding to the complexity of GRB afterglows, the plateau phase (typically associated with the coasting phase of the jet) is seen in this object after the ``normal decay phase (emitted during the deceleration phase of the jet) and the jet break phase occurs directly after the plateau. We suggest that this sequence of events can be explained by a rapid deceleration of the jet with $t_dlesssim 40$ s due to the high density of the environment ($approx 100$ cm$^{-3}$) followed by reactivation of the central engine which causes the flare and powers the plateau phase.
The long ${it Swift}$ gamma-ray burst GRB 120326A at redshift $z=1.798$ exhibited a multi-band light curve with a striking feature: a late-time, long-lasting achromatic rebrightening, rarely seen in such events. Peaking in optical and X-ray bands $si m 35$ ks ($sim 12.5$ ks in the GRB rest frame) after the 70-s GRB prompt burst, the feature brightens nearly two orders of magnitude above the underlying optical power-law decay. Modelling the multiwavelength light curves, we investigate possible causes of the rebrightening in the context of the standard fireball model. We exclude a range of scenarios for the origin of this feature: reverse-shock flash, late-time forward shock peak due to the passage of the maximal synchrotron frequency through the optical band, late central engine optical/X-ray flares, interaction between the expanding blast wave and a density enhancement in the circumburst medium and gravitational microlensing. Instead we conclude that the achromatic rebrightening may be caused by a refreshed forward shock or a geometrical effect. In addition, we identify an additional component after the end of the prompt emission, that shapes the observed X-ray and optical light curves differently, ruling out a single overall emission component to explain the observed early time emission.
Long-lived high-energy (>100MeV) emission, a common feature of most Fermi-LAT detected gamma-ray burst, is detected up to sim 10^2 s in the short GRB 090510. We study the origin of this long-lived high-energy emission, using broad-band observations i ncluding X-ray and optical data. We confirm that the late > 100 MeV, X-ray and optical emission can be naturally explained via synchrotron emission from an adiabatic forward shock propagating into a homogeneous ambient medium with low number density. The Klein-Nishina effects are found to be significant, and effects due to jet spreading and magnetic field amplification in the shock appear to be required. Under the constraints from the low-energy observations, the adiabatic forward shock synchrotron emission is consistent with the later-time (t>2s) high-energy emission, but falls below the early-time (t < 2s) high energy emission. Thus we argue that an extra high energy component is needed at early times. A standard reverse shock origin is found to be inconsistent with this extra component. Therefore, we attribute the early part of the high-energy emission (t< 2s) to the prompt component, and the long-lived high energy emission (t>2s) to the adiabatic forward shock synchrotron afterglow radiation. This avoids the requirement for an extremely high initial Lorentz factor.
We present the results from the Suzaku X-ray observations of five flat-spectrum radio quasars (FSRQs), namely PKS0208-512, Q0827+243, PKS1127-145, PKS1510-089 and 3C 454.3. All these sources were additionally monitored simultaneously or quasi-simulta neously by the Fermi satellite in gamma-rays and the Swift UVOT in the UV and optical bands, respectively. We constructed their broad-band spectra covering the frequency range from 10^14 Hz up to 10^25 Hz, and those reveal the nature of high-energy emission of luminous blazars in their low-activity states. The analyzed X-ray spectra are well fitted by a power-law model with photoelectric absorption. In the case of PKS0208-512, PKS1127-145, and 3C 454.3, the X-ray continuum showed indication of hard-ening at low-energies. Moreover, when compared with the previous X-ray observations, we see a significantly increasing contribution of low-energy photons to the total X-ray fluxes when the sources are getting fainter. The same behavior can be noted in the Suzaku data alone. A likely explanation involves a variable, flat-spectrum component produced via inverse-Compton (IC) emission, plus an additional, possibly steady soft X-ray component prominent when the source gets fainter. This soft X-ray excess is represented either by a steep powerlaw (photon indices Gamma ~ 3 - 5) or a blackbody-type emission with temperatures kT ~ 0.1-0.2 keV. We model the broad-band spectra spectra of the five observed FSRQs using synchrotron self-Compton (SSC) and/or external-Compton radiation (ECR) models. Our modeling suggests that the difference between the low and high-activity states in luminous blazars is due to the different total kinetic power of the jet, most likely related to varying bulk Lorentz factor of the outflow within the blazar emission zone.
96 - Mi-Xiang Lan , Zi-Gao Dai 2020
Besides light curves and spectra, polarization provides a different powerful tool of studying the $gamma-$ray burst (GRB) prompt phase. Compared with the time-integrated and energy-integrated polarization, time-resolved and energy-resolved polarizati on can deliver more physical information about the emitting region. Here we investigate time-resolved and energy-resolved polarization of GRB prompt emission using the synchrotron models. We find that the equal arrival time surface effect is very important in shaping the PD curves when the physical conditions of emitting region changes violently with radius. Polarization properties are neither correlated with the spectral lag nor the peak energy evolution patterns. Polarization properties with a mixed magnetic field are very similar to those for a corresponding ordered magnetic field but the former has a smaller polarization degree. The emission at the MeV peak can be highly polarized for a synchrotron model while it is unpolarized as predicted by a dissipative photosphere model. Future energy-resolved polarization observations can distinguish between these two models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا