ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of $alpha_s$ from static QCD potential: OPE with renormalon subtraction and lattice QCD

75   0   0.0 ( 0 )
 نشر من قبل Hiromasa Takaura
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the strong coupling constant $alpha_s$ from the static QCD potential by matching a theoretical calculation with a lattice QCD computation. We employ a new theoretical formulation based on the operator product expansion, in which renormalons are subtracted from the leading Wilson coefficient. We remove not only the leading renormalon uncertainty of $mathcal{O}(Lambda_{rm QCD})$ but also the first $r$-dependent uncertainty of $mathcal{O}(Lambda_{rm QCD}^3 r^2)$. The theoretical prediction for the potential turns out to be valid at the static color charge distance $Lambda_{rm overline{MS}} r lesssim 0.8$ ($r lesssim 0.4$ fm), which is significantly larger than ordinary perturbation theory. With lattice data down to $Lambda_{rm overline{MS}} r sim 0.09$ ($r sim 0.05$ fm), we perform the matching in a wide region of $r$, which has been difficult in previous determinations of $alpha_s$ from the potential. Our final result is $alpha_s(M_Z^2) = 0.1179^{+0.0015}_{-0.0014}$ with 1.3 % accuracy. The dominant uncertainty comes from higher order corrections to the perturbative prediction and can be straightforwardly reduced by simulating finer lattices.

قيم البحث

اقرأ أيضاً

We determine the strong coupling constant $alpha_s(M_Z)$ from the static QCD potential by matching a lattice result and a theoretical calculation. We use a new theoretical framework based on operator product expansion (OPE), where renormalons are sub tracted from the leading Wilson coefficient. We find that our OPE prediction can explain the lattice data at $Lambda_{rm QCD} r lesssim 0.8$. This allows us to use a larger window in matching, which leads to a more reliable determination. We obtain $alpha_s(M_Z)=0.1179^{+0.0015}_{-0.0014}$.
78 - S. Recksiegel , Y. Sumino 2002
We compare the perturbatively calculated QCD potential to that obtained from lattice calculations in the theory without light quark flavours. We examine E_tot(r) = 2 m_pole + V_QCD(r) by re-expressing it in the MSbar mass m = m^MSbar(m^MSbar) and by choosing specific prescriptions for fixing the scale mu (dependent on r and m). By adjusting m so as to maximise the range of convergence, we show that perturbative and lattice calculations agree up to 3*r_0 ~ 7.5 GeV^-1 (r_0 is the Sommer scale) within the uncertainty of order Lambda^3 r^2.
111 - Hiromasa Takaura 2017
Perturbative calculations of the static QCD potential have the $u=3/2$ renormalon uncertainty. In the multipole expansion performed within pNRQCD, this uncertainty at LO is known to get canceled against the ultrasoft correction at NLO. To investigate the net contribution remaining after this renormalon cancellation, we propose a formulation to separate the ultrasoft correction into renormalon uncertainties and a renormalon independent part. We focus on very short distances $Lambda_{rm QCD} r lesssim 0.1$ and investigate the ultrasoft correction based on its perturbative evaluation in the large-$beta_0$ approximation. We also propose a method to examine the local gluon condensate, which appears as the first nonperturbative effect to the static QCD potential, without suffering from the $u=2$ renormalon.
We obtain a new value for the QCD coupling constant by combining lattice QCD simulations with experimental data for hadron masses. Our lattice analysis is the first to: 1) include vacuum polarization effects from all three light-quark flavors (using MILC configurations); 2) include third-order terms in perturbation theory; 3) systematically estimate fourth and higher-order terms; 4) use an unambiguous lattice spacing; and 5) use an $order(a^2)$-accurate QCD action. We use 28~different (but related) short-distance quantities to obtain $alpha_{bar{mathrm{MS}}}^{(5)}(M_Z) = 0.1170(12)$.
62 - C.Davies , A.Gray , M.Alford 2002
We describe the first lattice determination of the strong coupling constant with 3 flavors of dynamical quarks. The method follows previous analyses in using a perturbative expansion for the plaquette and Upsilon spectroscopy to set the scale. Using dynamical configurations from the MILC collaboration with 2+1 flavors of dynamical quarks we are able to avoid previous problems of having to extrapolate to 3 light flavors from 0 and 2. Our results agree with our previous work: alpha_s_MSbar(M_Z) = 0.121(3).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا