ترغب بنشر مسار تعليمي؟ اضغط هنا

Instability-driven Oscillations of Elastic Microfilaments

117   0   0.0 ( 0 )
 نشر من قبل Feng Ling
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cilia and flagella are highly conserved slender organelles that exhibit a variety of rhythmic beating patterns from non-planar cone-like motions to planar wave-like deformations. Although their internal structure, composed of a microtubule-based axoneme driven by dynein motors, is known, the mechanism responsible for these beating patterns remains elusive. Existing theories suggest that the dynein activity is dynamically regulated, via a geometric feedback from the ciliums mechanical deformation to the dynein force. An alternative, open-loop mechanism based on a flutter instability was recently proven to lead to planar oscillations of elastic filaments under follower forces. Here, we show that an elastic filament in viscous fluid, clamped at one end and acted on by an external distribution of compressive axial forces, exhibits a Hopf bifurcation that leads to non-planar spinning of the buckled filament at a locked curvature. We also show the existence of a second bifurcation, at larger force values, that induces a transition from non-planar spinning to planar wave-like oscillations. We elucidate the nature of these instabilities using a combination of nonlinear numerical analysis, linear stability theory, and low-order bead-spring models. Our results show that away from the transition thresholds, these beating patterns are robust to perturbations in the distribution of axial forces and in the filament configuration. These findings support the theory that an open-loop, instability-driven mechanism could explain both the sustained oscillations and the wide variety of periodic beating patterns observed in cilia and flagella.

قيم البحث

اقرأ أيضاً

The interaction of flexible structures with viscoelastic flows can result in very rich dynamics. In this paper, we present the results of the interactions between the flow of a viscoelastic polymer solution and a cantilevered beam in a confined micro fluidic geometry. Cantilevered beams with varying length and flexibility were studied. With increasing flow rate and Weissenberg number, the flow transitioned from a fore-aft symmetric flow to a stable detached vortex upstream of the beam, to a time-dependent unstable vortex shedding. The shedding of the unstable vortex upstream of the beam imposed a time-dependent drag force on the cantilevered beam resulting in flow-induced beam oscillations. The oscillations of the flexible beam were classified into two distinct regimes: a regime with a clear single vortex shedding from upstream of the beam resulting in a sinusoidal beam oscillation pattern with the frequency of oscillation increasing monotonically with Weissenberg number, and a regime at high Weissenberg numbers characterized by 3D chaotic flow instabilities where the frequency of oscillations plateaued. The critical onset of the flow transitions, the mechanism of vortex shedding and the dynamics of the cantilevered beam response are presented in detail here as a function of beam flexibility and flow viscoelasticity.
Cilia and flagella are essential building blocks for biological fluid transport and locomotion at the micron scale. They often beat in synchrony and may transition between different synchronization modes in the same cell type. Here, we investigate th e behavior of elastic microfilaments, protruding from a surface and driven at their base by a configuration-dependent torque. We consider full hydrodynamic interactions among and within filaments and no slip at the surface. Isolated filaments exhibit periodic deformations, with increasing waviness and frequency as the magnitude of the driving torque increases. Two nearby but independently-driven filaments synchronize their beating in-phase or anti-phase. This synchrony arises autonomously via the interplay between hydrodynamic coupling and filament elasticity. Importantly, in-phase and anti-phase synchronization modes are bistable and co-exist for a range of driving torques and separation distances. These findings are consistent with experimental observations of in-phase and anti-phase synchronization in the biflagellate textit{Chlamydomonas reinhardtii} and could have important implications on understanding the biophysical mechanisms underlying transitions between multiple synchronization modes.
We analyze the instability of a vortex column in a dilute polymer solution at large $textit{Re}$ and $textit{De}$ with $textit{El} = textit{De}/textit{Re}$, the elasticity number, being finite. Here, $textit{Re} = Omega_0 a^2/ u_s$ and $textit{De} = Omega_0 tau$ are, respectively, the Reynolds and Deborah numbers based on the core angular velocity ($Omega_0$), the radius of the column ($a$), the solvent-based kinematic viscosity ($ u_s = mu_s/rho$), and the polymeric relaxation time ($tau$). The stability of small-amplitude perturbations in this distinguished limit is governed by the elastic Rayleigh equation whose spectrum is parameterized by $ textrm{E} = textit{El}(1-beta)$, $beta$ being the ratio of the solvent to the solution viscosity. The neglect of the relaxation terms, in the said limit, implies that the polymer solution supports undamped elastic shear waves propagating relative to the base-state flow. The existence of these shear waves leads to multiple (three) continuous spectra associated with the elastic Rayleigh equation in contrast to just one for the original Rayleigh equation. Further, unlike the neutrally stable inviscid case, an instability of the vortex column arises for finite E due to a pair of elastic shear waves being driven into a resonant interaction under the differential convection by the irrotational shearing flow outside the core. An asymptotic analysis for the Rankine profile shows the absence of an elastic threshold; although, for small E, the growth rate of the unstable discrete mode is transcendentally small, being O$(textrm{E}^2e^{-1/textrm{E}^{frac{1}{2}}})$. An accompanying numerical investigation shows that the instability persists for smooth vorticity profiles, provided the radial extent of the transition region (from the rotational core to the irrotational exterior) is less than a certain $textrm{E}$-dependent threshold.
Extremely small amounts of surface-active contaminants are known to drastically modify the hydrodynamic response of the water-air interface. Surfactant concentrations as low as a few thousand molecules per square micron are sufficient to eventually i nduce complete stiffening. In order to probe the shear response of a water-air interface, we design a radial flow experiment that consists in an upward water jet directed to the interface. We observe that the standard no-slip effect is often circumvented by an azimuthal instability with the occurence of a vortex pair. Supported by numerical simulations, we highlight that the instability occurs in the (inertia-less) Stokes regime and is driven by surfactant advection by the flow. The latter mechanism is suggested as a general feature in a wide variety of reported and yet unexplained observations.
The ability to create dynamic deformations of micron-sized structures is relevant to a wide variety of applications such as adaptable optics, soft robotics, and reconfigurable microfluidic devices. In this work we examine non-uniform lubrication flow as a mechanism to create complex deformation fields in an elastic plate. We consider a Kirchoff-Love elasticity model for the plate and Hele-Shaw flow in a narrow gap between the plate and a parallel rigid surface. Based on linearization of the Reynolds equation, we obtain a governing equation which relates elastic deformations to gradients in non-homogenous physical properties of the fluid (e.g. body forces, viscosity, and slip velocity). We then focus on a specific case of non-uniform Helmholtz-Smoluchowski electroosmotic slip velocity, and provide a method for determining the zeta-potential distribution necessary to generate arbitrary static and quasi-static deformations of the elastic plate. Extending the problem to time-dependent solutions, we analyze transient effects on asymptotically static solutions, and finally provide a closed form solution for a Greens function for time periodic actuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا