ترغب بنشر مسار تعليمي؟ اضغط هنا

Automated identification of flagella from videomicroscopy via the medial axis transform

92   0   0.0 ( 0 )
 نشر من قبل Benjamin Walker
 تاريخ النشر 2018
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ubiquitous in eukaryotic organisms, the flagellum is a well-studied organelle that is well-known to be responsible for motility in a variety of organisms. Commonly necessitated in their study is the capability to image and subsequently track the movement of one or more flagella using videomicroscopy, requiring digital isolation and location of the flagellum within a sequence of frames. Such a process in general currently requires some researcher input, providing some manual estimate or reliance on an experiment-specific heuristic to correctly identify and track the motion of a flagellum. Here we present a fully-automated method of flagellum identification from videomicroscopy based on the fact that the flagella are of approximately constant width when viewed by microscopy. We demonstrate the effectiveness of the algorithm by application to captured videomicroscopy of Leishmania mexicana, a parasitic monoflagellate of the family Trypanosomatidae. ImageJ Macros for flagellar identification are provided, and high accuracy and remarkable throughput are achieved via this unsupervised method, obtaining results comparable in quality to previous studies of closely-related species but achieved without the need for precursory measurements or the development of a specialised heuristic, enabling in general the automated generation of digitised kinematic descriptions of flagellar beating from videomicroscopy.



قيم البحث

اقرأ أيضاً

The medial axis transform has applications in numerous fields including visualization, computer graphics, and computer vision. Unfortunately, traditional medial axis transformations are usually brittle in the presence of outliers, perturbations and/o r noise along the boundary of objects. To overcome this limitation, we introduce a new formulation of the medial axis transform which is naturally robust in the presence of these artifacts. Unlike previous work which has approached the medial axis from a computational geometry angle, we consider it from a numerical optimization perspective. In this work, we follow the definition of the medial axis transform as the set of maximally inscribed spheres. We show how this definition can be formulated as a least squares relaxation where the transform is obtained by minimizing a continuous optimization problem. The proposed approach is inherently parallelizable by performing independant optimization of each sphere using Gauss-Newton, and its least-squares form allows it to be significantly more robust compared to traditional computational geometry approaches. Extensive experiments on 2D and 3D objects demonstrate that our method provides superior results to the state of the art on both synthetic and real-data.
74 - Xuan Guo , Shichao Feng 2020
Metaproteomics are becoming widely used in microbiome research for gaining insights into the functional state of the microbial community. Current metaproteomics studies are generally based on high-throughput tandem mass spectrometry (MS/MS) coupled w ith liquid chromatography. The identification of peptides and proteins from MS data involves the computational procedure of searching MS/MS spectra against a predefined protein sequence database and assigning top-scored peptides to spectra. Existing computational tools are still far from being able to extract all the information out of large MS/MS datasets acquired from metaproteome samples. In this paper, we proposed a deep-learning-based algorithm, called DeepFilter, for improving the rate of confident peptide identifications from a collection of tandem mass spectra. Compared with other post-processing tools, including Percolator, Q-ranker, PeptideProphet, and Iprophet, DeepFilter identified 20% and 10% more peptide-spectrum-matches and proteins, respectively, on marine microbial and soil microbial metaproteome samples with false discovery rate at 1%.
Understanding primate behavior is a mission-critical goal of both biology and biomedicine. Despite the importance of behavior, our ability to rigorously quantify it has heretofore been limited to low-information measures like preference, looking time , and reaction time, or to non-scaleable measures like ethograms. However, recent technological advances have led to a major revolution in behavioral measurement. Specifically, digital video cameras and automated pose tracking software can provide detailed measures of full body position (i.e., pose) of multiple primates over time (i.e., behavior) with high spatial and temporal resolution. Pose-tracking technology in turn can be used to detect behavioral states, such as eating, sleeping, and mating. The availability of such data has in turn spurred developments in data analysis techniques. Together, these changes are poised to lead to major advances in scientific fields that rely on behavioral as a dependent variable. In this review, we situate the tracking revolution in the history of the study of behavior, argue for investment in and development of analytical and research techniques that can profit from the advent of the era of big behavior, and propose that zoos will have a central role to play in this era.
The decreasing costs and increasing speed and accuracy of DNA sample collection, preparation, and sequencing has rapidly produced an enormous volume of genetic data. However, fast and accurate analysis of the samples remains a bottleneck. Here we pre sent D$^{4}$RAGenS, a genetic sequence identification algorithm that exhibits the Big Data handling and computational power of the Dynamic Distributed Dimensional Data Model (D4M). The method leverages linear algebra and statistical properties to increase computational performance while retaining accuracy by subsampling the data. Two run modes, Fast and Wise, yield speed and precision tradeoffs, with applications in biodefense and medical diagnostics. The D$^{4}$RAGenS analysis algorithm is tested over several datasets, including three utilized for the Defense Threat Reduction Agency (DTRA) metagenomic algorithm contest.
292 - Runze Yan , Afsaneh Doryab 2021
Modeling biological rhythms helps understand the complex principles behind the physical and psychological abnormalities of human bodies, to plan life schedules, and avoid persisting fatigue and mood and sleep alterations due to the desynchronization of those rhythms. The first step in modeling biological rhythms is to identify their characteristics, such as cyclic periods, phase, and amplitude. However, human rhythms are susceptible to external events, which cause irregular fluctuations in waveforms and affect the characterization of each rhythm. In this paper, we present our exploratory work towards developing a computational framework for automated discovery and modeling of human rhythms. We first identify cyclic periods in time series data using three different methods and test their performance on both synthetic data and real fine-grained biological data. We observe consistent periods are detected by all three methods. We then model inner cycles within each period through identifying change points to observe fluctuations in biological data that may inform the impact of external events on human rhythms. The results provide initial insights into the design of a computational framework for discovering and modeling human rhythms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا