ﻻ يوجد ملخص باللغة العربية
This paper proposes a maximum-likelihood approach to jointly estimate marginal conditional quantiles of multivariate response variables in a linear regression framework. We consider a slight reparameterization of the Multivariate Asymmetric Laplace distribution proposed by Kotz et al (2001) and exploit its location-scale mixture representation to implement a new EM algorithm for estimating model parameters. The idea is to extend the link between the Asymmetric Laplace distribution and the well-known univariate quantile regression model to a multivariate context, i.e. when a multivariate dependent variable is concerned. The approach accounts for association among multiple responses and study how the relationship between responses and explanatory variables can vary across different quantiles of the marginal conditional distribution of the responses. A penalized version of the EM algorithm is also presented to tackle the problem of variable selection. The validity of our approach is analyzed in a simulation study, where we also provide evidence on the efficiency gain of the proposed method compared to estimation obtained by separate univariate quantile regressions. A real data application is finally proposed to study the main determinants of financial distress in a sample of Italian firms.
Regression models describing the joint distribution of multivariate response variables conditional on covariate information have become an important aspect of contemporary regression analysis. However, a limitation of such models is that they often r
We propose a multivariate functional responses low rank regression model with possible high dimensional functional responses and scalar covariates. By expanding the slope functions on a set of sieve basis, we reconstruct the basis coefficients as a m
In this paper the method of simulated quantiles (MSQ) of Dominicy and Veredas (2013) and Dominick et al. (2013) is extended to a general multivariate framework (MMSQ) and to provide a sparse estimator of the scale matrix (sparse-MMSQ). The MSQ, like
We introduce a new approach to a linear-circular regression problem that relates multiple linear predictors to a circular response. We follow a modeling approach of a wrapped normal distribution that describes angular variables and angular distributi
The use of quantiles to obtain insights about multivariate data is addressed. It is argued that incisive insights can be obtained by considering directional quantiles, the quantiles of projections. Directional quantile envelopes are proposed as a way