In the color string picture with fusion and percolation the dependence of the flow coefficients $v_n$ on the transverse momentum is studied for pp collisions the LHC energy respectively. Monte-Carlo simulations are used to locate simple strings and their fused clusters. The results favorably agree with the CMS data in the region $0.2 le p_tle 3.$ GeV/c appropriate for the string scenario.
In view of the planning experiments for collisions of light nuclei at RHIC the flow coefficients for O-O, Al-AL and Cu-Cu collisions are studied in the color string percolation model. Our results for $v_2$ are somewhat smaller than predicted by other
groups although with the same dependence on centrality. Our obtained $v_3$ lie between predictions of other groups.
Phenomenological Tsallis fits to the CMS and ATLAS transverse spectra of charged particles were found to extend for p_T from 0.5 to 181 GeV in pp collisions at LHC at sqrt{s}=7 TeV, and for p_T from 0.5 to 31 GeV at sqrt{s}=0.9 TeV. The simplicity of
the Tsallis parametrization and the large range of the fitting transverse momentum raise questions on the physical meaning of the degrees of freedom that enter into the Tsallis distribution or q-statistics.
We develop a Monte-Carlo event generator based on combination of a parton production formula including the effects of parton saturation (called the DHJ formula) and hadronization process due to the Lund string fragmentation model. This event generato
r is designed for the description of hadron productions at forward rapidities and in a wide transverse momentum range in high-energy proton-proton collisions. We analyze transverse momentum spectra of charged hadrons as well as identified particles; pion, kaon, (anti-)proton at RHIC energy, and ultra-forward neutral pion spectra from LHCf experiment. We compare our results to those obtained in other models based on parton-hadron duality and fragmentation functions.
Next-to-leading order (NLO) QCD predictions for the production of heavy quarks in proton-proton collisions are presented within three different approaches to quark mass, resummation and fragmentation effects. In particular, new NLO and parton shower
simulations with POWHEG are performed in the ALICE kinematic regime at three different centre-of-mass energies, including scale and parton density variations, in order to establish a reliable baseline for future detailed studies of heavy-quark suppression in heavy-ion collisions. Very good agreement of POWHEG is found with FONLL, in particular for centrally produced D^0, D^+ and D^*+ mesons and electrons from charm and bottom quark decays, but also with the generally somewhat higher GM-VFNS predictions within the theoretical uncertainties. The latter are dominated by scale rather than quark mass variations. Parton density uncertainties for charm and bottom quark production are computed here with POWHEG for the first time and shown to be dominant in the forward regime, e.g. for muons coming from heavy-flavour decays. The fragmentation into D_s^+ mesons seems to require further tuning within the NLO Monte Carlo approach.
Transport coefficients serve as important probes in characterizing the QCD matter created in high-energy heavy-ion collisions. Thermal and electrical conductivities as transport coefficients have got special significance in studying the time evolutio
n of the created matter. We have adopted color string percolation approach for the estimation of thermal conductivity ($kappa$), electrical conductivity ($sigma_{el}$) and their ratio, which is popularly known as Wiedemann-Franz law in condensed matter physics. The ratio $kappa/sigma_{el}T$, which is also known as Lorenz number ($mathbb{L}$) is studied as a function of temperature and is compared with various theoretical calculations. We observe that the thermal conductivity for hot QCD medium is almost temperature independent in the present formalism and matches with the results obtained in ideal equation of state (EOS) for quark-gluon plasma with fixed coupling constant ($alpha_s$). The obtained Lorenz number is compared with the Stefan-Boltzmann limit for an ideal gas. We observe that a hot QCD medium with color degrees of freedom behaves like a free electron gas.
M.A. Braun
,C. Pajares
.
(2018)
.
"$p_t$- dependence of the flow coefficients for pp collisions in the color string scenario. Monte-Carlo simulations"
.
Mikhail Braun
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا