ﻻ يوجد ملخص باللغة العربية
Unified Virtual Memory (UVM) was recently introduced on recent NVIDIA GPUs. Through software and hardware support, UVM provides a coherent shared memory across the entire heterogeneous node, migrating data as appropriate. The older CUDA programming style is akin to older large-memory UNIX applications which used to directly load and unload memory segments. Newer CUDA programs have started taking advantage of UVM for the same reasons of superior programmability that UNIX applications long ago switched to assuming the presence of virtual memory. Therefore, checkpointing of UVM will become increasingly important, especially as NVIDIA CUDA continues to gain wider popularity: 87 of the top 500 supercomputers in the latest listings are GPU-accelerated, with a current trend of ten additional GPU-based supercomputers each year. A new scalable checkpointing mechanism, CRUM (Checkpoint-Restart for Unified Memory), is demonstrated for hybrid CUDA/MPI computations across multiple computer nodes. CRUM supports a fast, forked checkpointing, which mostly overlaps the CUDA computation with storage of the checkpoint image in stable storage. The runtime overhead of using CRUM is 6% on average, and the time for forked checkpointing is seen to be a factor of up to 40 times less than traditional, synchronous checkpointing.
Fault tolerance for the upcoming exascale generation has long been an area of active research. One of the components of a fault tolerance strategy is checkpointing. Petascale-level checkpointing is demonstrated through a new mechanism for virtualizat
The share of the top 500 supercomputers with NVIDIA GPUs is now over 25% and continues to grow. While fault tolerance is a critical issue for supercomputing, there does not currently exist an efficient, scalable solution for CUDA applications on NVID
In order to efficiently use the future generations of supercomputers, fault tolerance and power consumption are two of the prime challenges anticipated by the High Performance Computing (HPC) community. Checkpoint/Restart (CR) has been and still is t
InfiniBand is widely used for low-latency, high-throughput cluster computing. Saving the state of the InfiniBand network as part of distributed checkpointing has been a long-standing challenge for researchers. Because of a lack of a solution, typical
It is common today to deploy complex software inside a virtual machine (VM). Snapshots provide rapid deployment, migration between hosts, dependability (fault tolerance), and security (insulating a guest VM from the host). Yet, for each virtual machi